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Abstract: In recent years, the delicate balance between economic development and ecological en-
vironment protection in ecologically fragile arid areas has gradually become apparent. Although
previous research has mainly focused on changes in ecological service value caused by land use,
a comprehensive understanding of ecology–economy harmony and ecological compensation re-
mains elusive. To address this, we employed a coupled deep learning model (convolutional neural
network-gated recurrent unit) to simulate the ecological service value of the Wuwei arid oasis over
the next 10 years. The ecology–economy harmony index was used to determine the priority range of
ecological compensation, while the GeoDetector analyzed the potential impact of driving factors on
ecological service value from 2000 to 2030. The results show the following: (1) The coupled model,
which extracts spatial features in the neighborhood of historical data using a convolutional neural
network and adaptively learns time features using the gated recurrent unit, achieved an overall
accuracy of 0.9377, outperforming three other models (gated recurrent unit, convolutional neural
network, and convolutional neural network—long short-term memory); (2) Ecological service value
in the arid oasis area illustrated an overall increasing trend from 2000 to 2030, but urban expansion
still caused a decrease in ecological service value; (3) Historical ecology–economy harmony was
mainly characterized by low conflict and potential crisis, while future ecology–economy harmony
will be characterized by potential crisis and high coordination. Minqin and Tianzhu in the north and
south have relatively high coordination between ecological environment and economic development,
while Liangzhou and Guluang in the west and east exhibited relatively low coordination, indicating
a greater urgency for ecological compensation; (4) Geomorphic, soil, and digital elevation model
emerged as the most influential natural factor affecting the spatial differentiation of ecological service
value in the arid oasis area. This study is of great significance for balancing economic development
and ecological protection and promoting sustainable development in arid areas.

Keywords: convolutional neural network; gated recurrent unit; ecological service value;
ecological–economic harmony; driving mechanism

1. Introduction

The benefits that people derive from multiple processes and ecosystem functions can
be described as ecosystem services [1]. Driven by the growth of urban demand, land use
change has led to serious degradation of global ecosystems [2,3]. On the one hand, the
invasion of large areas of ecological land has resulted in irreversible biodiversity loss [4].
On the other hand, local climate change, the urban heat island effect, and changes in
precipitation have contributed to the decline in the Ecological service value (ESV) [5]. With
population growth and economic development, global ecosystems have been seriously
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damaged, and the imbalance between economic development and ecological environment
protection has gradually become prominent, especially in ecologically fragile arid areas [6,7].
In arid regions, characterized by harsh climatic conditions, soil salinization and alkalization,
and the sustainability of ecosystem services has always been a focus of attention [8,9]. Oasis
ecosystems play an essential role in social and economic stability and development in arid
areas, but their ecological fragility is particularly pronounced due to the low precipitation
and high evaporation rates [10,11]. Wuwei Oasis is situated in the Shiyang River Basin, an
important inland river in Northwest China’s ecologically fragile area, and its ecological
environment quality has a serious impact on the entire basin [12,13]. Therefore, focusing
on the ESV and EEH in the arid oasis area of Wuwei is of great significance for promoting
sustainable development and achieving a balance between economic growth and ecological
protection [14].

Ecological services are characterized by complex interconnections and strong scale
effects, with changes in ESV often being determined by multiple ecosystem services [15].
The benefit transfer method can not only rapidly assess the individual ecological benefits of
multiple ecosystem services but also evaluate their overall ecological benefits, and therefore,
it has been widely used in ESV evaluation [16]. However, the benefit transfer method relies
on equivalent factor coefficients to characterize the relationship between different land
use types and ESV, which is subjective. In addition, there is spatiotemporal heterogeneity
in land use distribution. Thus, it is necessary to adjust the coefficient value of multiple
ecosystem services according to the natural and socioeconomic characteristics of the area to
improve the accuracy of ESV estimates.

Assessing the impact of future land use changes on ESV and Ecology–Economy Har-
mony (EEH) can provide scientific policy recommendations for ecosystem management [17].
Li, et al. [18] employed the InVEST and SLEUTH models to evaluate the impact of land use
changes on habitat quality. However, existing models often have difficulty in reliably pre-
dicting future land use changes, leading to significant errors in evaluation results [19]. Deep
learning has recently emerged as a powerful tool for time-series object modeling, demon-
strating excellent performance in various domains [20]. It can not only extract implicit
spatial features from datasets with multiple variables to improve feature representation abil-
ity [21] but also exploit long-term time dependencies among large amounts of time-series
data to establish accurate feature maps [22]. Among the various deep learning models,
convolutional neural networks (CNN) have been extensively utilized in the dynamic simu-
lation of time-series data. Zhai, et al. [23] fused CNN and vector-based cellular automata to
extract high-level features of irregularly shaped cells in the neighborhood and simulate
land use changes, achieving higher simulation accuracy than other models such as Random
Forest and Artificial Neural Networks. Qian, et al. [24] also validated the effectiveness of
deep learning models such as CNN applying land use data from Shanghai from 2000 to
2015. However, existing studies exploring neighborhood effects in transformation rules
have only considered the extraction of spatial features in historical data dimensions, ignor-
ing the significant long-term time dependencies in neighborhood interactions, resulting
in low simulation accuracy [25]. A gated recurrent unit (GRU) network is a deep learning
model used to extract time-dimension features. Compared with traditional recurrent neural
networks, it can improve memory capacity and training performance and better solve
overfitting, gradient vanishing, and explosion problems. Cao, et al. [26] predicted grain
loss and waste rates based on a multi-task multi-gate recurrent unit autoencoder method,
and the results indicated that the accuracy of this method was higher than that of existing
models. Chen, et al. [27] applied the GRU network to predict long-term degradation trends
based on available data on degradation features. In light of the excellent performance of
the GRU in time feature extraction, we coupled the CNN-GRU model to complement the
deficiencies in existing time-series data simulation research.

Ecological compensation is a widely recognized economic approach to improving
water yield, soil and water conservation, intensive and efficient use of water resources, eco-
logical, environmental protection, and pollution control by coordinating the relationships
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between different stakeholders [28]. There exist various methods for evaluating ecological
compensation, including the willingness-to-pay, opportunity cost, ecological footprint, and
value theory methods [29,30]. While the willingness-to-pay method relies on subjective
survey data [31], the opportunity cost method tends to undervalue ecosystem services by
focusing on cost-benefit analysis [32]. Similarly, the ecological footprint method determines
the sustainability of ecological compensation by evaluating the supply and demand re-
lationship between humans and ecological resources, but its sustainability is weak [33].
The ecological service value method, which is based on the theory of externalities, bridges
the gap between natural ecosystems and economic systems by quantifying the direct or
indirect available ecological value used to produce ecosystem services [34]. It quantifies
ecological compensation by comparing the non-market ESV per unit area with the GDP
per unit area of the area. Although ESV is complex and unstable at cross-regional scales,
it can be corrected by incorporating various regional data, such as food and GDP, and is
applicable to a wide range of research scales [35]. Consequently, ESV evaluation appears
to be a more suitable method for ecological compensation. In addition, EEH is a critical
foundation for setting reasonable ecological compensation standards and accurately quan-
tifying ecological compensation, which has often been frequently overlooked in previous
research. ESV comprises various ecosystem services, including supply, regulation, support,
and cultural services, and exploring the ESV represented by different ecosystem services
is necessary to fully express the EEH of the area, serving ecological compensation and
sustainable development.

A thorough analysis of the influencing factors and mechanisms of ESV is a crucial
basis for guiding ecological protection decision-making [36]. Wu et al. [17] quantitatively
analyzed the impact of rapid urbanization on ecosystem services in Kunshan from 2006 to
2030. Chen, et al. [37] utilized cellular automata and geographically weighted regression
to simulate the ESV loss caused by land use changes in Chongqing. Previous studies
have primarily focused on the rise or fall of ESV caused by land use changes, but little is
known about the driving mechanisms of ESV, particularly in arid areas [38,39]. Research
methods for ESV and its driving factors have primarily included principal component and
correlation analysis [40], regression models, and grey relational analysis [41]. Although
these methods can explain the contribution of influencing factors to a certain extent, they
fail to capture the interaction and joint effects between influencing factors and cannot fully
express the complex spatial correlation and spatiotemporal differentiation characteristics
within ESV [42]. GeoDetector can further reveal the spatial distribution relationship and
interaction mechanism between independent and dependent variables from a statistical
perspective by converting qualitative data into quantitative data [43,44]. Therefore, this
study utilizes GeoDetector to quantitatively analyze the explanatory power of each driving
factor for spatial variable distribution characteristics and explore the interaction between
two factors [45].

The main contributions of this study are as follows:
(1) Proposed a new CNN-GRU model, which integrates both temporal and spatial

neighborhood features, for simulating the dynamic process of land use change. This
approach outperforms three other models, including GRU, CNN, and CNN long short-
term memory (LSTM), and provides higher accuracy in predicting land use change;

(2) Revealed the impact of land use change on ESV in the arid oasis area of Northwest
China;

(3) Determined EEH in the historical period and the next 10 years in the arid oasis
area, as well as the priority for ecological compensation;

(4) Employed the GeoDetector to explore the driving mechanism of ESV;

2. Study Area and Data Sources

2.1. Study Area

Wuwei (Figure 1) (36◦29′~39◦27′N, 101◦49′~104◦16′E) is located in Northwest China,
at the intersection of the Loess Plateau, the Qinghai–Tibet Plateau, and the Mongolian
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Plateau [46]. The terrain is complex, with the southern area belonging to the Qilian Moun-
tains, and the climate is suitable for the development of forestry and animal husbandry. The
central area is a flat oasis area with fertile land and is an important agricultural production
base in China. The northern area is a desert area with low precipitation [12]. Wuwei spans
326 km in length and 204 km in width and has natural landscapes, such as snow-covered
highlands, oases, and deserts. The permanent population was 1.825 × 104 at the end of
2019 [13].

Figure 1. Study area and land use spatial distribution. Wuwei belongs to a warm-temperate continen-
tal arid climate with an average annual temperature of 7.8 ◦C and a precipitation range of 60–610 mm.
In terms of administrative divisions, it includes one district, two counties, and one autonomous
county, with a total area of 3.32 × 104 km2.
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2.2. Data Sources

The land use datasets for 2000, 2010, and 2020 were obtained from the Global Geo-
graphic Information Products Platform for this study. The driving factors were categorized
into four types: transportation accessibility; socioeconomic conditions; terrain conditions;
and climate conditions, consisting of 14 categories. Data sources for each category are
presented in Table A1 of the attached Appendix A. Transportation accessibility variables
included major roads, railways, rivers, residential areas, and ecological function protection
areas, while socioeconomic variables included nighttime lights, GDP, population, and
NPP. Terrain conditions included elevation, slope, and faults, while conditions included
precipitation and temperature. All data were resampled to a spatial resolution of 30 m
and normalized to ensure consistency across variables. In the initial phase, remote sensing
images were acquired, and an extensive data preprocessing pipeline was implemented.
This preprocessing encompassed radiometric calibration, atmospheric correction, geometric
correction, image mosaicking, and cropping. These rigorous steps were undertaken to
rectify image distortions, geometric irregularities, and atmospheric interferences arising
from sensor characteristics, spatial variations, atmospheric absorption, scattering, and other
influential factors. Subsequently, we leveraged a land use remote sensing dataset to obtain
comprehensive land use classification data. Additionally, key remote sensing variables,
such as nighttime lights, were strategically integrated as driving factors into the CNN-GRU
algorithm. This integration facilitated the acquisition of spatiotemporal features, thereby
enabling the model to effectively learn and process complex temporal dynamics and land
use patterns.

3. Methods

The research framework is illustrated in Figure 2.

3.1. Land Use Modeling

3.1.1. CNN

The CNN architecture typically comprises convolutional layers, pooling layers, acti-
vation functions, and fully connected layers [47]. Convolutional layers extract the spatial
features of the input image by using filters learned from the training data set. Usually, an
activation function is used after the convolutional layers to introduce nonlinearity into the
network and capture the complex relationship between the input and output [48]. After the
activation function, a pooling layer is added to retain the main features of the convolutional
layer while reducing parameters. Finally, the objective of the fully connected layer is to
predict the output value based on a nonlinear combination of a series of feature maps
from convolutional and pooling layers. The core of this study is to use CNN to extract the
complex spatial features of the data and pooling layers are omitted to prevent the loss of
relevant features [49].

3.1.2. GRU

GRU calculates the probability distribution of the time series data by employing the
encoder and decoder [50]. Initially, the conditional distribution on a variable-length output
sequence given another variable-length sequence is learned (e.g., p(y1, ..., yT′ |x1, ... ,xT),
where T and T′ are the input and output sequences, respectively. Secondly, the encoder
reads the temporal features of the input sequence x in order. The hidden state h(t) changes
with the time step (Equation (1)). Upon reading the sequence end, h(t) is the summary of
the entire input sequence c. The decoder is trained to generate the output sequence by
predicting the time dimension feature yt of the next neighboring unit. The hidden state at
time t is determined by Equation (2). Using the softmax activation function to predict the
probability distribution of the next neighboring unit learning sequence (Equation (3)), the
output of each time step t is the conditional distribution p(xt|xt−1, ... ,x1). By combining
the probability of each neighboring unit, the probability of sequence x is calculated by
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Equation (4). Therefore, the conditional distribution of the time dimension feature of the
next neighboring unit is Equation (5) [51].

h(t) = f
(

h(t−1), xt

)
(1)

h(t) = f
(

h(t−1), y(t−1), c
)

(2)

p(x(t,j) = 1|xt−1, ..., x1) =
exp(wjh(t)

)

∑
K
j′=1 exp(wj′h(t)

) (3)

p(x) =
T

∏
t=1

pt(x|xt−1, ..., x1) (4)

p
(

yt

∣∣∣y(t−1), y(t−2), ..., y1, c
)
= g
(

h(t), y(t−1), c
)

(5)

Here, f is a non-linear activation function; wj is the row of weight matrix w. For a
given activation function g, it must generate effective probabilities.

rt
zt

Tanh

xt

+

ht

+

+

t

l-+

ht-1

xt

 

Figure 2. Research framework. (ESV: ecological service value; FP: food production; MP: material
production; WS: water supply; AQR: air quality regulation; CR: climate regulation; WT: waste
treatment; RWF: regulation of water flows; EP: erosion prevention; MSF: maintenance of soil fertility;
HS: habitat services; CAS: cultural and amenity services).
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The activation calculation for the jth hidden unit is given by:

rj = σ
([

Wrx]j +
[
Urh(t−1)]j

)
(6)

zj = σ
([

Wzx]j +
[
Uzh(t−1)]j

)
(7)

h
(t)
j = zjh

(t−1)
j +

(
1 − zj

)∼
h
(t)

j (8)

∼
h
(t)

j = f ([Wx]j + rj[Uh(t−1)]) (9)

Here, rj represents the reset gate; zj represents the update gate; hj represents the actual
activation of the unit; σ is the sigmoid function; [.]j represents the jth element of the vector;
x and h(t−1) are the input state and the previous hidden state, and Wr and Ur are weight
matrices.

When the reset gate is close to 0, the hidden state is forced to ignore the previous
hidden state and only use the current input to reset. The update gate controls the amount
of information transferred from the previous hidden state to the current hidden state for
the long-term memory [52]. Each hidden unit has separate reset and update gates, so it can
learn to capture dependencies at different time scales.

3.1.3. CNN-GRU

To optimize the land-use change simulation research, we constructed a six-layer
network structure consisting of two CNN layers, two GRU layers, and two fully connected
layers. The two convolutional layers each consist of 14 3 × 3 convolutional kernels, resulting
in a (N − 2) × (N − 2) × 14 feature map. The data were then formatted with 14 time steps
and one input feature per time step. The first GRU layer has 64 cores, with h(t) being passed
to the next layer at each time step. The second GRU layer has 94 cores and only outputs h(t)

at the final time step. To avoid overfitting, the dropout rate was set to 20% for both GRU
layers, and the tanh activation function was chosen to improve model performance. Finally,
there are two fully connected layers, with 128 neurons in the first layer and a dropout rate of
20% and 8 neurons in the second layer with a softmax classifier. After continuous iteration,
we found that the optimal learning rate for the research area data was 0.002; the batch
size was set to 128, and the Adam algorithm was selected as the optimizer. Further, the
cross-entropy loss function was introduced to optimize model performance. The number
of epochs was set to 50, the loss value decreased rapidly to a certain point, and the iteration
process basically converged.

The modeling process consists of four steps: (1) Data preprocessing and model training:
preprocessing land use historical data and driving factor variables to prepare for training
and conversion rules; (2) Model calibration: utilizing CNN and GRU algorithms to extract
spatial and temporal neighborhood features of land use and driving factors, continuously
optimizing the model’s performance; (3) Model validation: comparing the simulated land
use change results in the CNN, GRU, CNN-LSTM, and CNN-GRU models with the actual
situation using the same data set; (4) Future prediction: using the calibrated model to
simulate future land use, ESV, and EEH changes.

Using Python coding, we calibrated the model parameters with historical data from
2000 to 2010 and generated simulation results for 2020 (Figure 3). To verify the model
performance, we compared the results with three sets of indicators, overall accuracy, Kappa
coefficient, and figure of merit (FOM). Specifically, we conducted comparisons among
(1) The coupled model and single models (CNN-GRU, CNN, and GRU) to examine the
importance of spatiotemporal feature extraction, (2) Different recurrent neural networks
(CNN-GRU and CNN-LSTM) as feature samplers for comparing the performance of time
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dimension feature extraction, and (3) Single spatiotemporal models (CNN and GRU) to
analyze the impact of temporal and spatial features on time series data simulation.

Figure 3. Simulated and actual land use maps for 2020.

3.2. ESV Evaluation

In this study, the ESV of Wuwei Oasis was calculated by exploiting the standard unit
results and evaluation method of the ecological service value equivalent factor improved
by Xie, et al. [53]. To ensure the applicability of the numerical coefficients in the calculation
of ESV at the regional scale, the coefficients were adjusted based on the correction factor for
grain production. The equations applied for calculating ESV are as follows:

Ea =
1
7
× P × Y (10)

Ei = Ea × q (11)

ESV = ∑(Ai × Ei) (12)

Here, Ea is the economic value of an ESV equivalent factor; Ei is the ESV of the land
ecosystem i per unit area; q is the ESV equivalent factor per unit area; Ai is the area of land
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ecosystem type I; Y is the crop yield per unit area in Wuwei, and P is the average grain
price in 2020.

3.3. Ecology–Economy Harmony

ESV change serves as a pivotal gauge for assessing regional socioeconomic and eco-
logical environment sustainability. Coordinated development between the ecological
environment and the economy entails a harmonious interaction and alignment of elements
within the environmental and economic subsystems throughout the regional development
trajectory, fostering their reciprocal advancement and ultimately elevating the overall devel-
opmental status of the region. Through an in-depth analysis of the association between al-
terations in ESV resulting from land use dynamics and the level of regional socio-economic
development, an assessment of the degree of harmony between the regional ecological
environment and economic progress can be achieved. The ecological environment and
economic development status in arid oasis areas was measured by utilizing the Ecology–
Economy Harmony (EEH) index (Table 1), which combines datasets of ESV and GDP of
the period from 2000 to 2030. The ecological compensation priority was then determined.
Additionally, the 2023 GDP data were obtained through time-series forecasting employing
Python 3.9 software.

EEH =

(ESVhj−ESVhi)
ESVhi

(GDPhj−GDPhi)
GDPhi

(13)

Here, EEH is the ecology–economy harmony index; ESVhj and ESVhi are the ecosystem
service values for different periods, and GDPhj and GDPhi are the GDP values for different
periods. Coordination and conflict levels are divided based on the regional characteristics
of the arid oasis area and the existing literature [54].

3.4. GeoDetector

We employed the Geodetector model to quantify the influence of various factors on
the changes in ESV in the Wuwei Oasis area [43]. Geodetector is a spatial statistical method
used for identifying driving factors of geographic phenomena, widely applied in the fields
of geography, environmental science, and public health, among others. It has the capability
to reveal the impact extent and interaction relationships of various factors on specific events
or phenomena. The determination of single-factor and two-factor contributions to ESV
values ranged from 0 to 1, with higher values denoting a more pronounced influence.
Unlike conventional approaches employed in identifying driving factors, Geodetector
demonstrates a distinctive advantage in its capacity to investigate the combined impact
of two independent variables on the dependent variable. Notably, Geodetector exhibits a
high degree of flexibility concerning the incorporation of input data, as it can effectively
accommodate both quantitative and qualitative data by means of a reclassification process,
enabling their seamless integration into the analytical framework. While previous studies
have mainly focused on socioeconomic data as the primary drivers for analysis, it is well
recognized that single socioeconomic factors cannot comprehensively predict regional ESV
changes. Thus, this study selected a range of factors, including natural factors, such as
DEM, slope, soil type, geomorphic type, and NDVI, as well as socioeconomic factors, such
as population density and GDP, and climate factors, such as precipitation and temperature.
It is important to note that natural environmental factors, climate, and landscape patterns
all have a certain impact on ESV in arid oasis areas, making the inclusion of these factors
critical for a comprehensive analysis.
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Table 1. Classification level of EEH index. At the coordination level, an EEH value greater than or
equal to 1 denotes that the growth rate of ESV equals or surpasses the growth rate of GDP. This
finding reflects a high degree of synchronization between the ecological environment and economic
development within this study’s area. Alternatively, it may suggest that the ecological environment
experienced significant damage initially but subsequently underwent ecological restoration, resulting
in certain limitations on economic development. On the other hand, when the EEH falls within
the range of 0 to 1, it indicates that the growth rate of ESV is lower than that of GDP. Despite
economic development not directly causing ecological degradation, varying degrees of ecological
pressure persist. A higher EEH value indicates enhanced coordination between ecological and
economic factors. In the conflict level, negative ESV growth signifies that economic development
has detrimental effects on ecological environment conservation, leading to disharmony between the
two. A lower EEH value indicates more pronounced conflicts between economic development and
ecological protection.

EEH Index Classification Level EEH Index Classification Level

EEH ≥ 1 high coordination −0.5 ≤ EEH < 0 low conflict

0.5 ≤ EEH < 1 moderate
coordination −1 ≤ EEH < −0.5 moderate conflict

0 ≤ EEH < 0.5 potential crisis EEH ≤ −1 serious conflict

4. Results

4.1. Model Comparison

4.1.1. Quantitative Analysis

(1) The CNN-GRU model outperformed the single models, highlighting that the ex-
traction of spatial-temporal neighborhood features is crucial in time series data simulation,
and ignoring any feature would substantially decrease the model’s performance;

(2) The FOM values showed that CNN-GRU was more effective in capturing temporal
features than CNN-LSTM. GRU’s ability to directly use gate control for linear self-updating
in the hidden unit overcomes the impact of short-term memory compared to linear self-
updating memory units used by LSTM;

(3) The OA was higher in the single spatiotemporal models (CNN and GRU) than in
the coupled CNN-GRU model, suggesting that spatial features have a greater impact on
simulation accuracy than temporal features;

(4) The CNN-GRU model, which comprehensively considers both spatial and temporal
features, exhibited superior accuracy compared to the other three models, providing strong
evidence of the effectiveness and superiority of the coupled model.

4.1.2. Qualitative Analysis

Qualitative evaluation of the simulation results revealed consistency between the pre-
dicted land use maps and the actual spatial distribution of Wuwei Oasis in 2020. However,
subtle differences were observed between the models (Figure 3). Specifically, the forest and
cultivated land ratios of GRU, CNN, and CNN-LSTM were higher than the corresponding
proportions in the actual land use map, suggesting insufficient feature extraction. GRU was
particularly prone to misjudgment, possibly due to the challenge of accurately capturing
feature maps from temporal sequence features alone. Moreover, notable discrepancies were
found in the prediction of unused land among the four models. While the predictions
generated by GRU and CNN were more dispersed, CNN-LSTM produced a more compact
distribution. Nonetheless, CNN-GRU exhibited the highest degree of spatial similarity to
the actual land use map, highlighting its exceptional simulation performance in predicting
time-series data. As such, we utilized the CNN-GRU model to forecast changes in land use
and ESV in 2030.
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4.2. ESV Changes from 2000 to 2030

The analysis revealed that the ESV of Wuwei Oasis experienced a decline of 6.96 × 108

from 2000 to 2010, and while the area experienced a partial recovery from 2010 to 2020,
the rate of recovery was slower than the decline from 2000 to 2010 (Figures 4 and 5).
Furthermore, the ESV of this study’s area remained in a state of loss from 2000 to 2020, with
a slight increase predicted for 2030.

4.2.1. Contribution of Different Ecosystem Services to ESV

In terms of the contribution of different ecosystem services to ESV, climate regulation
and regulation of water flows were the main types of ecosystem services in Wuwei Oasis,
accounting for 20.11% and 19.84% of the total ESV, respectively. In contrast, water supply
and maintenance of soil fertility had the smallest proportions, only 1.83% and 1.31%,
respectively. During the period from 2000 to 2010, all ecosystem services exhibited a
decreasing trend, with the highest loss rates for climate regulation services (−0.71%). From
2010 to 2020, except for food production, all ES exhibited an increasing trend, although with
a small overall growth rate. Among them, water supply had the highest ESV growth rate of
0.71%, while food production had a loss rate of −0.31%. From 2000 to 2020, except for the
regulation of water flows and water supply, all other ecosystem services led to ESV losses.
The ESV changes from 2020 to 2030 were consistent with those from 2010 to 2020, with
an increasing trend for all ecosystem services except food production. However, the loss
rate of food production was low, and the regulation of water flows had the highest growth
rate. Qualitatively, the distribution pattern of ESV increased gradually from northeast to
southwest, which was attributed to the distribution of land use types from unused land,
cultivated land, and grassland to forest from northeast to southwest, with a corresponding
increase in vegetation cover. The 11 ESV types exhibited differences and similarities, with
similarities in their spatial distribution patterns, while differences mainly reflected the
composition of different ecosystem services. High values of the total ESV were relatively
scarce, scattered in Tianzhu in the south. The 11 types of ESV could be divided into three
categories. The first category included food production, material production, air quality
regulation, erosion prevention, and maintenance of soil fertility, with relatively balanced
high, medium, and low-value areas. The high-value areas were mainly distributed in the
central part of Minqin, the southern parts of Liangzhou and Gulang, and the northern part
of Tianzhu. The low-value areas surrounded the high-value areas, and the medium-value
areas were only present in the southern part of Tianzhu. The second category included
water supply, climate regulation, regulation of water flows, habitat services, and cultural
and amenity services, where some high-value areas in the first category were replaced by
medium-value areas in the second category, indicating that the functions of the second
category of ecosystem services were lower than those of the first category. The third
category was water treatment, which differed from the second category in that medium-
value areas replaced high-value areas, indicating that water treatment in Minqin had
stronger functional capabilities than the above services.
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Figure 4. Spatial distribution of total ESV and 11 ESV from 2000 to 2030, and bar graphs are ESVs
of different land use types and ecosystem service representations from 2000 to 2030. (FP: food
production; MP: material production; WS: water supply; AQR: air quality regulation; CR: climate
regulation; WT: waste treatment; RWF: regulation of water flows; EP: erosion prevention; MSF:
maintenance of soil fertility; HS: habitat services; CAS: cultural and amenity services).

4.2.2. Contribution of Different Land Use Types to ESV

The examination of ESV from the perspective of land use types revealed a notable
trend in forestland, wetland, and water, which all showed an increase from 2000 to 2010.
However, the ESV represented by the remaining land use types exhibited a decrease, with
shrubland and glaciers experiencing the highest loss rate of ESV (−1.37% and −2.38%,
respectively). The ESV changes observed from 2010 to 2020 remained consistent with
the trend from 2000 to 2010, except for unused land, which changed from a decline to
an increase. Over the entire 20-year period from 2000 to 2020, forests experienced the
most severe loss of ESV. Looking ahead to 2030, the distribution of ESV in Wuwei Oasis is
expected to be the lowest in the edge area of Minqin, which is consistent with the spatial
distribution of unused land. Additionally, the forest in Tianzhu contributed the most to ESV.
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Among the ESVs represented by different land use types, grassland, wetland, and water all
showed a decreasing trend, with water having the largest loss rate of ESV (−3.45%) and
shrubland having the highest growth rate (6.32%).

 

Figure 5. Spatial distribution changes in total ESV and 11 types of ESV in different periods. Lower
variation values correspond to more substantial declines in ESV; higher ESV variation values are
indicative of a more pronounced increase in ESV. An ESV variation value of 0 denotes a state of stable
ESV, indicating no net change in ESV.

4.3. Ecological Compensation Changes from 2000 to 2030

There are significant differences in the temporal and spatial distributions of total
EEH and different ecosystem services’ EEH (Figure 6). From a temporal perspective, this
study identified five types of EEH from 2000 to 2010, including moderate conflict, low
conflict, potential crisis, moderate coordination, and high coordination. The overall study
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area exhibited a potential crisis, with highly coordinated areas in the Northern Minqin
and Northwestern Tianzhu, suggesting that the changes in ESV and GDP were positively
correlated during this period. In contrast, Southeastern Tianzhu showed low conflict,
indicating that economic development had caused some loss of ESV and had an impact on
the ecological environment. From 2010 to 2020, the EEH types remained consistent with
those from 2000 to 2010, but the proportion of moderate and high conflict and coordination
increased. In the 2020–2030 EEH types, high conflict replaced moderate conflict, and
coordination shifted toward a negative direction. The ecological and economic status of
this study’s area underwent a shift from coordination to contradiction and then back to
coordination due to the rapid population growth and negative growth of ESV from 2010 to
2020, leading to a lower level of conflict between the ecological environment and economic
development.

Although the total EEH changes were relatively peaceful, the EEH changes in different
ecosystem services were more intense. Specifically, from 2000 to 2020, the potential crisis
turned into low conflict. From 2010 to 2030, the contradiction and coordination status
became more apparent. The strong coordination is mainly due to the high altitude of these
areas, which partly limited the regional economic development. However, a large amount
of water and grass resources provided a higher ESV, indicating a high demand for ecological
compensation in the area. Therefore, priority should be given to ecological compensation
to promote the common development of ecology and economy. The more apparent the
contradiction, the more serious the ecological degradation problem, and resolving the
contradiction should be the main way to solve the problem, with ecological compensation
as an auxiliary tool. As time passes, the gap in ecological compensation priority is grad-
ually increasing, indicating that the economic development level gap between counties
is gradually widening. Thus, focus on addressing the ecological degradation problems
related to air quality regulation, regulation of water flows, erosion prevention, habitat
services, and cultural and amenity services. Meanwhile, to deal with the widening gap
between counties, ecological compensation should be given priority to Tianzhu, followed
by Minqin, Gulang, and Liangzhou.

4.4. Driving Mechanism of ESV

We found that the impact trends of driving factors on ESV were consistent across
different years, with an overall decreasing trend from 2000 to 2030 (Figure 7). Among the
natural, socio-economic, and climatic factors considered, the geomorphic type had the
highest q value, followed by soil type and DEM. Geomorphic, soil, and DEM were identified
as the primary driving factors affecting regional ESV. This was because this study’s area
is located in an ecologically sensitive area with significant spatial differences in terrain.
Our findings suggest that elevation plays an important role in the spatial distribution
of ESV in the arid oasis area. Climate factors mainly affected the material exchange
between underground soil and aboveground vegetation through changes in precipitation
and temperature, ultimately impacting changes in regional ESV. In contrast, the socio-
economic factors had the weakest driving force. The population density represented the
degree of disturbance of human activities on ESV. The q value for GDP was the lowest,
indicating that its impact on the spatial differentiation of ESV was the smallest. The low
contribution rate of population density and GDP in the area was mainly due to the small
proportion of urban areas and population distribution in this study’s area. This is consistent
with previous research, but the driving mechanisms of ESV differ significantly between
the arid oasis area and the humid coastal area of Southeast China. In the humid southeast
area, socio-economic factors such as GDP and population density are the main driving
forces behind the loss of ESV, while in the northwest arid area, the increase in ESV is mainly
driven by natural landscape patterns. This corresponds to the significant differences in
socio-economic development and natural landscape between the humid southeast area and
the arid northwest area.
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Figure 6. Changes in the spatial distribution of EEH for different ecosystem services in different periods.
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Figure 7. The contribution of single-factor (Radar map) and two-factor (Heat map) to ESV.
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The results of exploring the interactions between factors showed that the driving
factors had a synergistic and enhancing effect on ESV in the Wuwei Oasis. Specifically,
there were two distinct modes of interaction, nonlinear enhancement, and two-factor
enhancement. The results of two-factor interactions were consistent with those of single-
factor interactions, with q values showing a decreasing trend from 2000 to 2030. However,
the contribution of two-factor interactions was significantly higher than that of single-factor
interactions, indicating a significant enhancement effect on the spatial differentiation of ESV.
Notably, the interaction between natural factors and other factors had the most significant
effect on ESV, with the q values exceeding the average value. Specifically, the interaction
between geomorphic type and other factors had the greatest driving force.

5. Discussion

5.1. Model Advantages

The neighborhood effect plays a critical role in extracting transfer rules and calculating
conversion probabilities in the dynamic simulation of the urban expansion [24,55]. Extract-
ing temporal features is an essential part of this process, which determines the dependency
relationships between model variables and parameters by computing gradients and storing
them through a time-backward propagation [56]. Recurrent Neural Network (RNN) can
pass the output and state of the current time as inputs to the next time, maintaining the data
relationship between each time, and has been proven to be an effective deep learning model
for processing time-series data [57]. However, RNN faces challenges such as vanishing and
exploding gradients, which limit their ability to maintain long-term dependencies. Many
excellent evolutionary models have been developed to optimize RNN, such as LSTM and
GRU. LSTM adds memory units to address long-term dependency issues [58], while GRU
reduces computational tensors by combining forget gates and input gates into a single
update gate [52]. GRU also mixes cell states and hidden states, making the model more
efficient and faster to train [59]. Applying batch normalization to the model optimizes
the distribution width and offset, accelerates the network learning rate, and facilitates the
gradient propagation [60]. ReLU, as an activation function, has sparse activation prop-
erties, enabling it to learn relatively sparse features from effective data dimensions and
automatically decouple features to avoid overfitting [61]. In the context of abundant and
comprehensive data, our model effectively harnesses regional land use data, in conjunction
with key natural geographic and socio-economic factors, to undergo rigorous learning
and training processes, iteratively fine-tuning various hyperparameters to achieve optimal
performance. Although this study focused on a specific region, the model’s underlying
principles and methodologies were designed to be adaptable to different climatic zones.
By carefully considering the environmental and socio-economic characteristics of various
regions during model calibration and validation, this model’s accuracy and reliability can
be enhanced for use in diverse geographical contexts. Consequently, the applicability of
this model extends beyond arid and semi-arid regions, encompassing a broader spectrum
of climate zones, including humid and semi-humid areas.

Previous studies on the spatiotemporal variation of ESV have mainly focused on
statistical analysis of quantitative data, with limited investigations on the underlying mech-
anisms driven by spatial factors. GeoDetector is highly inclusive in their analysis of data
features. On the one hand, it can directly analyze quantified numerical values such as
temperature and precipitation, which influence ecosystem services by regulating water
and heat conditions and affecting biological behavior [62–64]. Additionally, socioeconomic
factors such as GDP and population density directly impact ESV through human activi-
ties [65]. On the other hand, it quantifies qualitative numerical values before analysis. For
example, natural factors such as soil type and geomorphic type, as the background elements
of biological habitat in the ecosystem, have important functions in accumulating organic
carbon and promoting water cycling. Changes in the background ecological conditions
have a substantial impact on ecosystem services such as soil conservation, soil erosion, and
biodiversity [66].
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5.2. Relationship between Land Use and ESV

Between 2000 to 2020, hydrological regulation remained the dominant function in this
study’s area. By 2030, climate regulation will surpass hydrological regulation to become
the dominant function in the arid oasis area of Wuwei. Despite this change, the proportion
of most ecosystem service functions remained stable with no more than a 0.005 change,
indicating a relatively stable structure of ecosystem service functions. Food production and
soil erosion experienced the most significant decrease in proportion, while hydrological
regulation increased by 0.009. This transformation primarily occurred in areas with more
intense human activities, which aligns with the resource utilization characteristics in China’s
arid areas [67,68]. Qualitatively, the ESV of various ecosystem services in this study’s area
exhibited slight changes between 2000 and 2030, which can be visually observed in Figure 4.
By comparison, the spatial distribution of ESV changes in the first 20 years was generally
more drastic than those in the future 10 years, with continuous changes in the former and
scattered changes in the latter. From 2000 to 2020, the degradation areas of food production,
material production, air quality regulation, erosion prevention, and maintenance of soil
fertility accounted for the largest proportion. The proportion of ESV losses and gains of
other ecosystem services was relatively average. Although the distribution of ESV changes
varied slightly among different ecosystem services, the spatial distribution changes in
ESV for ecosystem services were generally greater than the overall ESV amplitude. This
complexity underscores the importance of studying ESV characterization for different
ecosystem services.

Land use change is a complex dynamic process that can have direct or indirect impacts
on ecosystem services and ESV [69]. The increase or decrease in ESV in this study area
is mainly contributed by farmland, forest, and grassland. Urban expansion, in particular,
has occupied a considerable amount of ecological land, leading to a deterioration of the
coupling coordination relationship between urban expansion and food production function.
This phenomenon has caused varying degrees of damage to the original functions of the
ecosystem, resulting in the problem of high-speed and low-quality urban expansion [70].
Due to natural geographic conditions, cultivated land is the most commonly occupied
land type during urban expansion. The rapid reduction in cultivated land area disrupts
the balanced ecological process and leads to a decline in the ecological system’s food
production value [71,72]. However, high-ESV land types, such as forests, wetlands, and
water bodies, are the main drivers of ESV changes because their ESV per unit area is higher
than that of cultivated land.

While previous research by Long, et al. [73] has shown that land use change due to
urban expansion in the eastern coastal area of China has severely damaged the ecosystem
and resulted in a decrease in ESV; our quantitative analysis of the Wuwei Oasis area’s ESV
indicates an opposite trend over time. This discrepancy can be attributed to differences in
climate, topography, urban expansion speed, and ecological environment between the arid
northwest area and the southeastern coastal area. To promote the sustainable development
of such eco-fragile cities as Wuwei Oasis, it is essential to plan regional land use reasonably
and optimize both economic and ecological benefits. Built-up land can reduce the ESV of
this study’s area, while the increase in ecological land, such as water bodies, wetlands, and
forests, will lead to an increase in ESV. Therefore, optimizing both economic and ecological
benefits, reducing ESV losses caused by unregulated development, and protecting land use
types with high ESV are the most effective ways to increase ESV [74].

5.3. Insights and Recommendations on Ecological Compensation

In reality, ecological compensation schemes in arid oasis areas are still in their early
stages, making the EEH prediction of ESV and its ecological compensation priority prac-
tically significant. ESV is a composite measure of diverse ecosystem services, including
provisioning, regulating, supporting, and cultural services. Unfortunately, current research
has only focused on total ESV policy and has not fully expressed the relationship between
ESV and the various ecosystem services [75,76]. Based on the EEH prediction results of

18



Remote Sens. 2023, 15, 3927

Wuwei in the arid oasis area, we propose suggestions for its sustainable development.
Firstly, measures must be taken to alleviate the degradation of air quality regulation, hy-
drological regulation, soil retention, biodiversity, and cultural services in Tianzhu and
Minqin. The main way is to increase vegetation coverage through afforestation to neu-
tralize carbon emissions in the atmosphere. It is also possible to prevent natural disasters
such as drought, floods, and debris flow to prevent large-scale soil and water loss and to
designate ecological protection zones to prevent the extinction of rare animals and plants.
Secondly, to further quantify ecological compensation standards in the arid oasis area, the
ESV, characterized by 11 ecosystem services, should be divided into natural contribution,
human input, human preference, and natural contribution + human input, based on their
importance and differences. Furthermore, our study has explored the driving factors of
total ESV; natural and human factors also have certain impacts on ecosystem services. For
example, a large terrain relief or excessive rainfall will accelerate surface runoff velocity,
enhance soil erosion, and cause soil and water loss. A higher vegetation coverage of forest
or grassland with certain canopy closures can reduce soil erosion and increase hydrological
regulation and soil conservation ability. Unreasonable land use by humans may destroy
surface vegetation and stable terrain, leading to the degradation of ecosystem services.
Therefore, targeted exploration of the driving mechanisms of ESV characterized by different
ecosystem services should be conducted to promote ecological and economic coordinated
sustainable development.

5.4. Limitations and Future Perspectives

In this study, we employed a high-performance deep learning model to simulate the
future ESV and ecological compensation in arid regions. The conducted investigation
offers valuable practical implications for land use planning and ecological compensation
policies. The main findings of this study are attractive for various regions and countries
facing similar challenges in land use management and ecological compensation. The deep
learning model’s transferability can be evaluated by adapting it to different study areas and
considering region-specific data and contextual factors [77]. In addition, the advanced land
use simulation and geospatial analysis techniques facilitate the identification of ecologically
sensitive areas, potential conflicts between economic development and environmental
conservation, and opportunities for ecological compensation schemes [78]. The insights
gained from our research can be utilized to inform policy development and land use
planning in diverse geographic contexts.

However, it is crucial to acknowledge the inherent limitations of our research. Firstly,
our land use simulation did not encompass multiple scenarios. While the baseline scenario
captures one potential future development trajectory, the implementation of novel ecologi-
cal and economic policies could exert notable influences on land use dynamics. As a result,
future investigations could integrate historical trends of land use changes and pertinent
policy considerations to furnish scientific underpinnings for territorial spatial planning and
the advancement of sustainable urban development. By accounting for a broader range
of scenarios, more comprehensive insights into the complex interplay between human
activities and ecological systems can be attained, enhancing the utility and robustness of
our findings. Moreover, further efforts in data collection and model refinement could aid
in reducing uncertainties and refining the precision of our predictions, ensuring greater
accuracy and applicability in decision-making processes and policy formulation.

6. Conclusions

Through the application of deep learning models and spatial analysis methods, this
study provides valuable insights into the identification of priority areas for ecological
compensation and the driving factors contributing to ESV in arid oasis areas. Results
demonstrate that (1) Deep learning models effectively captured the spatiotemporal neigh-
borhood features of land use dynamics, and CNN-GRU exhibited the highest accuracy
and most accurately simulated the 2020 land use; (2) The built-up area of Wuwei Oasis
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is projected to increase by 25.35% from 2000 to 2030, resulting in a significant decline
in ESV (−2.38%). Climate regulation was identified as the main contributor to ESV in
this study, while the loss rate was also the highest. Wetlands and water bodies were the
dominant factors affecting the change in ESV per area unit; (3) In the historical period,
EEH was primarily characterized by low conflicts and potential crises, while potential
crises and high coordination will be the main features in the future. The coordination
of Minqin and Tianzhu in the south and north of this study’s area was generally higher
than that of Liangzhou and Guluang in the east and west, and the urgency of ecological
compensation was correspondingly higher; (4) Natural factors had the most significant
impact on ESV, and the explanatory power of bivariate interaction detection for ESV spatial
differentiation increased significantly. Moreover, the contribution of single and multiple
factors to ESV showed a decreasing trend from 2000 to 2030. Overall, the findings of this
study provide important insights that can inform strategies for promoting the restoration
of oasis ecosystems and sustainable urban development.
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Appendix A

Table A1. Data Format and Source.

Category Data Data Format Data Sources
Spatial

Resolution

Traffic
accessibility

distance to the
settlement vector (Point)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m

distance to
road

vector
(Polyline)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m

distance to
railway

vector
(Polyline)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m

distance to
river

vector
(Polyline)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m
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Table A1. Cont.

Category Data Data Format Data Sources
Spatial

Resolution

distance to
ecological
function

protection area

vector
(Polygont)

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 1 January 2022

30 m

Social and
economic
conditions

population raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 2 January 2022

30 m

GDP raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 2 January 2022

30 m

nighttime
lights rasterd

Hubei high-resolution earth
observation system

application platform (http:
//59.175.109.173:8888)

accessed on 2 January 2022

30 m

NPP raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 2 January 2022

30 m

Terrain
conditions elevation raster

USGS Earth Explorer (https:
//earthexplorer.usgs.gov/)
accessed on 3 January 2022

30 m

slope raster
USGS Earth Explorer (https:
//earthexplorer.usgs.gov/)
accessed on 3 January 2022

30 m

fault vector
(Polyline)

“Hydrogeological Map of
Gansu Province”

(Gansu Geological and
Mineral Bureau

Hydrogeological
Engineering Geological

Survey Institute)
(http://www.gssgy.com/)
accessed on 3 January 2022

30 m

Climatic
conditions temperature raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 4 January 2022

30 m
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Abstract: Super-resolution (SR) technology plays a crucial role in improving the spatial resolution
of remote sensing images so as to overcome the physical limitations of spaceborne imaging sys-
tems. Although deep convolutional neural networks have achieved promising results, most of them
overlook the advantage of self-similarity information across different scales and high-dimensional
features after the upsampling layers. To address the problem, we propose a hybrid-scale hierar-
chical transformer network (HSTNet) to achieve faithful remote sensing image SR. Specifically, we
propose a hybrid-scale feature exploitation module to leverage the internal recursive information
in single and cross scales within the images. To fully leverage the high-dimensional features and
enhance discrimination, we designed a cross-scale enhancement transformer to capture long-range
dependencies and efficiently calculate the relevance between high-dimension and low-dimension
features. The proposed HSTNet achieves the best result in PSNR and SSIM with the UCMecred
dataset and AID dataset. Comparative experiments demonstrate the effectiveness of the proposed
methods and prove that the HSTNet outperforms the state-of-the-art competitors both in quantitative
and qualitative evaluations.

Keywords: super-resolution; remote sensing image; convolutional neural network; transformer;
self-similarity

1. Introduction

With the rapid progress of satellite platforms and optical remote sensing technol-
ogy, remote sensing images (RSIs) have been broadly deployed in civilian and military
fields, e.g., disaster prevention, meteorological forecast, military mapping, and missile
warning [1,2]. However, due to hardware limitations and environmental restrictions [3,4],
RSIs often suffer from low-resolution (LR) and contain some intrinsic noise. Upgrading
physical imaging equipment to improve resolution is often plagued by high costs and long
development cycles. Therefore, it is of utmost urgency to explore the remote sensing image
super-resolution (RSISR).

Single-image super-resolution (SR) is a highly ill-posed visual problem which aims
to reconstruct high-resolution (HR) images from corresponding degraded LR images. To
this end, many representative algorithms have been proposed, which can be roughly di-
vided into three categories, i.e., interpolation-based methods [5,6], reconstruction-based
methods [7,8], and learning-based methods [9,10]. The interpolation-based methods gen-
erally utilize different interpolation operations, including bilinear interpolation, bicubic
interpolation, and nearest interpolation, to estimate unknown pixel value [11]. These
methods are relatively straightforward in practice, while the reconstructed images lack
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essential details. In contrast, reconstruction-based methods improve image quality by
incorporating prior information of the image as constraints into the HR image. These
methods can restore high-frequency details with the help of prior knowledge, while they
require substantial computational costs, making it difficult for them to be readily applied
to RSIs [12]. Learning-based approaches try to produce HR images by learning the map-
ping relationship established between external LR–HR image training pairs. Compared
with the aforementioned two lines of methods, learning-based methods achieve better
performance and become the mainstream in this domain due to the powerful feature
representation ability provided by convolutional neural networks (CNNs) [13]. However,
learning-based methods generally adopt the post-upsampling framework [14], which solely
exploits low-dimensional features while ignoring the discriminative high-dimensional fea-
ture information after the upsampling process.

In addition to utilizing nonlinear mapping between LR–HR image training pairs, the
self-similarity of the image is also employed to improve the performance of SR algorithms.
Self-similarity refers to the property of similar patches appear repeatedly in a single image
and is broadly adopted in image denoising [15,16], deblurring [17], and SR [18–20]. Self-
similarities are also an intrinsic property in RSIs, i.e., internal recursive information. Figure 1
illustrates the self-similarities in RSIs. One can see that the down-scaled image is on the
left, and the original one is on the right. Similar highway patches with green box labels
appear repeatedly in the same scale image, while the roof of factories with red box labels
appear repeatedly across different scales, and these patches with similar edges and textures
contain abundant internal recursive information. Previously, Pan et al. [21] employed
dictionary learning to capture structural self-similarity features as additional information
to improve the performance of the model. However, the sparse representation of SR has
a limited ability to leverage the internal recursive information within the entire remote
sensing image.

single-scale similarities

cross-scale similarities

Figure 1. Illustration of self-similarities in RSIs with single-scale (green box) and cross-scale (red box).

In this paper, we propose a Hybrid-Scale Hierarchical Transformer Network (HSTNet)
for RSISR. The HSTNet can enhance the representation of the high-dimensional features
after upsampling layers and fully utilize the self-similarity information in RSIs. Specifically,
we propose a hybrid-scale feature exploitation (HSFE) module to leverage the internal
similar information both in single and cross scales within the images. The HSFE module
contains two branches, i.e., a single-scale branch and a cross-scale branch. The former
is employed to capture the recurrence within the same scale image, and the latter is
utilized to learn the feature correlation across different scales. Moreover, we designed a
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cross-scale enhancement transformer (CSET) module to capture long-range dependencies
and efficiently model the relevance between high-dimension and low-dimension features.
In the CSET module, the encoders are used to encode low-dimension features from the
HSFE module, and the decoder is used to utilize to fuse the multiple hierarchies high-
/low-dimensional features so as to enhance the representation ability of high-dimensional
features. To sum up, the main contributions of this work are as follows:

1. We propose an HSFE module with two branches to leverage the internal recursive
information from both single and cross scales within the images for enriching the
feature representations for RSISR.

2. We designed a CSET module to capture long-range dependencies and efficiently
calculate the relevance between high-dimension and low-dimension features. It helps
the network reconstruct SR images with rich edges and contours.

3. Jointly incorporating the HSFE and CSET modules, we formed the HSTNet for RSISR.
Extensive experiments on two challenging remote sensing datasets verify the superi-
ority of the proposed model.

2. Related Literature

2.1. CNN-Based SR Models

Dong et al. [22] pioneered the adoption of an SR convolutional neural network (SR-
CNN) that utilizes three convolution layers to establish the nonlinear mapping relationship
between LR–HR image training pairs. On the basis of the residual network introduced by
He et al. [23], Kim et al. [24] designed a very deep SR convolutional neural network (VDSR)
where residual learning is employed to accelerate model training and improve reconstruc-
tion quality. Lim et al. [25] built the enhanced deep super-resolution model to simplify the
network and improve the computational efficiency via optimizing the initial residual block.
Zhang et al. [26] designed a deep residual dense network in which the residual network
with dense skip connections is used to transfer intermediate features. Benefiting from the
channel attention (CA) module, Zhang et al. [27] presented a deep residual channel atten-
tion network to enhance the high-frequency channel feature representation. Dai et al. [28]
designed a second-order CA mechanism to guide the model to improve the ability of
discriminative learning ability and exploit more conducive features. Li et al. [29] proposed
an image super-resolution feedback network (SRFBN) in which a feedback mechanism is
adopted to transfer high-level feature information. The SRFBN could leverage high-level
features to polish up the representation of low-level features.

Because of the impact of spatial resolution on the final performance of many RSI tasks,
including instance segmentation, object detection, and scene classification, RSISR also raises
significant research interest. Lei et al. [30] proposed a local–global combined network (LGC-
Net) which can enhance the multilevel representations, including local detail features and
global information. Haut et al. [31] produced a deep compendium model (DCM), which
leverages skip connection and residual unit to exploit more informative features. To fuse
different hierarchical contextual features efficiently, Wang et al. [32] designed a contextual
transformation network (CTNet) based on a contextual transformation layer and contextual
feature aggregation module. Ni et al. [33] designed a hierarchical feature aggregation and
self-learning network in which both self-learning and feedback mechanisms are employed
to improve the quality of reconstruction images. Wang et al. [34] produced a multiscale
fast Fourier transform (FFT)-based attention network (MSFFTAN), which employs a multi-
input U-shape structure as the backbone for accurate RSISR. Liang et al. [35] presented a
multiscale hybrid attention graph convolution neural network for RSISR in which a hybrid
attention mechanism was adopted to obtain more abundant critical high-frequency informa-
tion. Wang et al. [36] proposed a multiscale enhancement network which utilizes multiscale
features of RSIs to recover more high-frequency details. However, the CNN-based meth-
ods above generally employ the post-upsampling framework that directly recovers HR
images after the upsampling layer, ignoring the discriminative high-dimensional feature
information after the upsampling process [14].
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2.2. Transformer-Based SR Models

Due to the strong long-range dependence learning ability of transformers, transformer-
based image SR methods have been studied recently by many scientific researchers.
Yang et al. [37] produced a texture transformer network for image super-resolution, in which
a learnable texture extractor is utilized to exploit and transmit the relevant textures to LR
images. Liang et al. [38] proposed SwinIR by transferring the ability of the Swin Trans-
former, which could achieve competitive performance on three representative tasks, namely
image denoising, JPEG compression artifact reduction, and image SR. Fang et al. [39] de-
signed a lightweight hybrid network of a CNN and transformer that can extract beneficial
features for image SR with the help of local and non-local priors. Lu et al. [40] presented a
hybrid model with a CNN backbone and transformer backbone, namely the efficient super-
resolution transformer, which achieved impressive results with low computational cost.
Yoo et al. [41] introduced an enriched CNN–transformer feature aggregation network in
which the CNN branch and transformer branch can mutually enhance each representation
during the feature extraction process. Due to the limited ability of multi-head self-attention
to extract cross-scale information, cross-token attention is adopted in the transformer
branch to utilize information from tokens of different scales.

Recently, transformers have also found their way into the domain of RSISR. Lei et al. [14]
proposed a transformer-based enhancement network (TransENet) to capture features from
different stages and adopted a multistage-enhanced structure that can integrate features from
different dimensions. Ye et al. [42] proposed a transformer-based super-resolution method
for RSIs, and they employed self-attention to establish dependencies relationships within
local and global features. Tu et al. [43] presented a GAN that draws on the strengths of
the CNN and Swin Transformer, termed the SWCGAN. The SWCGAN fully considers the
characteristics of large size, a large amount of information, and a strong relevance between
pixels required for RSISR. He et al. [44] designed a dense spectral transformer to extract the
long-range dependence for spectral super-resolution. Although the transformer can improve
the long-range dependence learning ability of the model, these methods do not leverage the
self-similarity within the entire remote sensing image [45].

3. Methodology

3.1. Overall Framework

The framework of the proposed HSTNet is shown in Figure 2. It is built by the combi-
nation of three kinds of fundamental modules, i.e., a low-dimension feature extraction (LFE)
module, a cross-scale enhancement transformer (CSET) module, and an upsample module.
Specifically, the LFE module is utilized to extract high-frequency features across different
scales, and the CSET module is employed to capture long-range dependency to enhance
the final feature representation. The upsample module is adopted to transform the feature
representation from a low-dimensional space to a high-dimensional space.

Given an LR image ILR, a convolutional layer with a 3 × 3 kernel is utilized to extract
the initial feature F0. The process of shallow feature extraction is formulated as

F0 = fsf(ILR), (1)

where fsf(·) represents the operation of the convolutional operation and F0 is the shal-
low feature.

As shown in Figure 3, the LFE module consists of five basic extraction (BE) modules,
and each BE module contains two 3 × 3 convolution layers and one hybrid-scale feature
exploitation (HSFE) module. As the core component of the BE module, the HSFE module
is proposed to model image self-similarity. The whole low-dimensional feature extraction
process is formulated as

Fi
LFE = f i

lfe

(
Fi−1

LFE

)
= f i

lfe

(
f i−1
lfe

(
· · · f 1

lfe(F0) · · ·
))

, i = 1, 2, 3, (2)

28



Remote Sens. 2023, 15, 3442

where f i
lfe(·) and Fi

LFE represent the operation of ith LFE module and its output. After the
three cascaded LFE modules, a subpixel layer [46] is adopted to transform low-dimensional
features into high-dimensional features, which is formulated as

Fup = Subpixel
(

F3
LFE

)
, (3)

where Fup represents the high-dimension feature and Subpixel(·) denotes the function of
the subpixel layer. The low-dimension features F1

LFE, F2
LFE, and F3

LFE and the high-dimension
feature Fup are fed into three cascaded CSET modules for feature hierarchical enhancement.
To reduce the redundancy of the enhanced features, a 1 × 1 convolution layer is employed
to reduce the feature dimension. The complete process including the enhancement and
dimension reduction is formulated as

Fi
CSET =

{
f i
cset

(
Fi

LFE, Fi+1
CSET

)
, i = 1, 2,

f i
cset
(

Fi
LFE, Fup

)
, i = 3,

(4)

where f i
cset(·) and Fi

CSET represent the operation of ith CSET module and its output, respec-
tively. Finally, one convolution layer is employed to obtain SR image ISR from the enhanced
features. A conventional L1 loss function was employed to train the proposed HSTNet
model. Given a training set

{
Ii
LR, Ii

HR
}N

i=1, the loss function is formulated as:

L(θ) =
1
N

N

∑
i=1

∥∥∥FHSTNet

(
Ii
LR

)
− Ii

HR

∥∥∥
1

, (5)

where FHSTNet denotes the proposed model parameterized by θ and N represents the
number of training LR–HR pairs.
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3.2. Hybrid-Scale Feature Exploitation Module

To explore the internal recursive information in single-scale and cross-scale, we pro-
pose an HSFE module. Figure 4 exhibits the architecture of the HSFE module, which
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consists of a single-scale branch and a cross-scale branch. The single-scale branch aims to
capture similar features within the same scale, and a non-local (NL) block [47] was utilized
to calculate the relevance of these features. The cross-scale branch was applied to capture
recursive features of the same image at different scales, and an adjusted non-local (ANL)
block [45] was utilized to calculate the relevance of features between two different scales.

(a) Nonlocal (NL) block (b) Adjusted nonlocal (ANL) block 
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Figure 4. Architecture of the proposed HSFE module.

Single-scale branch: As depicted in Figure 4, we built the single-scale branch to
extract single-scale features. Specifically, in the single-scale branch, several convolutional
layers are applied to capture recursive features, and an NL block is employed to guide
the network to concentrate on informative areas. As shown in Figure 4a, an embedding
function is utilized to mine the similarity information as

f
(
xi, xj

)
= e(θT(xi)ϕ(xj)) = e

(
(Wθ xi)

T(Wϕxj)
)

, (6)

where i is the index of the output position, j is the index that enumerates all positions, and
x denotes the input of the NL block. Wθ and Wϕ are the embeddings weight matrix. The
non-local function is symbolized as

yi =

(
∑
∀j

f
(
xi, xj

)
g
(
xj

)
)/

∑
∀j

f
(
xi, xj

)
. (7)

The relevance between xi and all xj can be calculated by pairwise function f (·). The
feature representation of xj can be obtained by the function g(·). Eventually, the output of
the NL block is obtained by

zi = Wφyi + xi, (8)

where Wφ is a weight matrix.
The convolution layer following the NL block transforms the input into an attention

diagram, which is then normalized with a sigmoid function. In addition, the main branch
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output features are multiplied by the attention diagram, where the activation values for
each space and channel location are rescaled.

Cross-scale branch: As depicted in Figure 4, the cross-scale branch is utilized to
perform cross-scale feature representation. Specifically, the input of the HSFE module
is considered the basic scale feature, which is symbolized as Fb

in. To exploit the internal
recursive information at different scales, the downsampled scale feature Fd

in is formulated as

Fd
in = f s

down

(
Fb

in

)
, (9)

where f s
down(·) denotes the operation of downsampling with scale factor s.

Two contextual transformation layers (CTLs) [48] are employed to extract feature with
two different scales Fb

in and Fd
in. To align the spatial dimension of the features in different

scales, the downsampled feature is firstly upsampled with the scale factor of s. xb and xb

represent the output of the basic scale and the downsampled scale through the two CTLs,
and this process is formulated as

xb = fctl

(
Fb

in

)

xd = f s
up

(
fctl

(
Fb

in

))
,

(10)

where fctl(·) denotes the operation of two CTLs and f s
up(·) represents the operation of

upsample with scale factor s.
Similar to the single-scale branch, an ANL block [45] was introduced to exploit the

feature correlation between two different scales RSIs. As shown in Figure 4b, the ANL
block is improved compared to the NL block, and they have different inputs. Thus, zi in
Equation (8) for ANL block can be rewritten as

f
(

xd
i , xb

j

)
= e

(
θT(xd

i )ϕ
(

xb
j

))
= e

(
(Wθ xd

i )
T
(

Wϕxb
j

))
, (11)

yi =

(
∑
∀j

f
(

xd
i , xb

j

)
g
(

xb
j

))/
∑
∀j

f
(

xb
i , xd

j

)
(12)

zi = Wφyi + xi. (13)

In the cross-scale branch, we employ the ANL block to fuse multiple scale features,
therefore fully utilizing the self-similarity information. The HSFE module can be formu-
lated as

Fout = fsin(Fin) + fcro(Fin) + Fin, (14)

where Fin is the input of the HSFE module and Fout is the output of the HSFE module. fsin(·)
and fcro(·) are the operation of the single-scale branch and cross-scale branch, respectively.

3.3. Cross-Scale Enhancement Transformer Module

The cross-scale enhancement transformer module is designed to learn the dependency
relationship across long distances between high-dimension and low-dimension features
and enhance the final feature representation. The architecture of the CSET module is shown
in Figure 5a. Specifically, we introduced the cross-scale token attention (CSTA) module [41]
to exploit the internal recursive information within an input image across different scales.
Moreover, we use three CSET modules to utilize different hierarchies of feature information.
Figure 5a illustrates in detail the procedure of feature enhancement using CSET-3 module
as an example.

Transformer encoder: The encoders are used to encode different hierarchies of fea-
tures from LFE modules. As shown in Figure 5a, the encoder is mainly composed of a
multi-headed self-attention (MHSA) block and a feed-forward network (FFN) block, which
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is similar to the original design in [49]. The FFN block contains two multilayer percep-
tron (MLP) layers with an expansion ratio r and a GELU activation function [50] in the
middle. Moreover, we adopted layer normalization (LN) before the MHSA block and FFN
block, and employed a local residual structure to avoid the gradient vanishing or explosion
during gradient backpropagation. The entire process of the encoder can be formulated as

Fi
EN

′
= fmhsa

(
fln

(
Fi

LFE

))
+ Fi

LFE

Fi
EN = f f f n

(
fln

(
Fi

EN
′))

+ Fi
EN

′
,

(15)

where fmhsa(·), fln(·), and f f f n(·) denote the function of the MHSA block, layer normaliza-

tion, and FFN block, respectively. Fi
EN

′ is the intermediate output of the encoder. Fi
LFE and

Fi
EN are the input and output of the encoder in the ith CSET module.

Transformer decoder: The decoders are utilized to fuse high-/low-dimensional fea-
tures from multiple hierarchies to enhance the representation ability of high-dimensional
features. As shown in Figure 5a, the decoder contains two MHSA blocks and a CSTA
block [41]. With the CSTA block, the decoder can exploit the recursive information within
an input image across different scales. The operation of the decoder can be formulated as

Fi
DE

′′
= fcsta

(
fln

(
Fup

))
+ Fup

Fi
DE

′
= fmhsa

(
fln

(
Fi

DE
′′)

, Fi
EN

′)
+ Fi

DE
′′

Fi
CSET = fmhsa

(
fln

(
Fi

DE
′))

+ Fi
DE

′
(16)

where fcsta(·) denotes the process of the CSTA block and Fup is the output of Encoder-4.
Each CSET module has two inputs, and the composition of the inputs is determined by
the location of the CSET module. Fi

DE
′ and Fi

DE
′′ represent the intermediate outputs of the

decoder. Fi
CSET represents the output of ith CSET module.

CSTA block: The CSTA block [41] is introduced to utilize the recurrent patch infor-
mation of different scales in the input image. The feature information flow of the CSTA
module is illustrated in Figure 5b. Specifically, the input token embeddings T ∈ Rn×d of
the CSTA block are split into Ta ∈ Rn× d

2 and Tb ∈ Rn× d
2 along the channel axis. Then,

Ts ∈ Rn× d
2 including n tokens from Taand Tl ∈ Rn′×d′ including n′ tokens by rearranging

Tb are generated. The number of tokens in Tl can be set to n′ =
[

h−t′
s′ + 1

]
×
[

w−t′
s′ + 1

]
,

where t′ and s′ represent the stride and token size. To improve efficiency, Ts is replaced
by Ta, and Tl is tokenized with a larger token size and overlapping. Numerous large-size
tokens can be obtained by overlapping, enabling the transformer to actively learn patch
recurrence across scales.

To effectively exploit self-similarity across different scales, we computed cross-scale
attention scores between tokens in both Ts and Tl . Specifically, the queries qs ∈ Rn× d

2 , keys
ks ∈ Rn× d

2 , and values vs ∈ Rn× d
2 were generated from Ts. Similarly, the queries ql ∈ Rn′× d

2 ,
keys kl ∈ Rn′× d

2 , and values vl ∈ Rn′× d
2 were generated from Tl . The reorganized triples(

qs, kl , vl
)

and
(

ql , ks, vs
)

were obtained by swapping their key–value pairs to each other.
Then, the attention operation was executed using the reorganized triples. It should be
noted that the projection of attention operations reduces the last dimension of queries,
keys, and values in Tl from d′ to d/2. Subsequently, we re-projected the attention results
of Tl to the dimension of n′ × d′ then transformed to the dimension of n × d

2 . Finally, we
concatenated the attention results to obtain the output of the CSTA block.
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Figure 5. Architecture of the CSET module.

4. Experiments

4.1. Experimental Dataset and Settings

We evaluate the proposed method on two widely adopted benchmarks [30,31,51],
namely the UCMecred dataset [52] and AID dataset [53], to demonstrate the effectiveness
of the proposed HSTNet.

UCMerced dataset: This dataset consists of 2100 images belonging to 21 categories
of varied remote sensing image scenes. All images exhibit a pixel size of 256 × 256 and a
spatial resolution of 0.3 m/pixel. The dataset is divided equally into two distinct sets, one
comprising 1050 images for training and the other for testing.

AID dataset: This dataset encompasses 10,000 remote sensing images, spanning 30
unique categories. In contrast to the UCMerced dataset, all images in this dataset have a
pixel size of 600 × 600 and spatial resolution of 0.5 m/pixel. A selection of 8000 images
from this dataset was randomly chosen for the purpose of training, while the remaining
2000 images were used for testing. In addition, a validation set consisting of five arbitrary
images from each category was established.

To verify the generalization of the proposed method, we further adapted the trained
model to the real-world images of Gaofen-1 and Gaofen-2 satellites. We downsampled
HR images through bicubic operations to obtain LR images. Two mainstream metrics,
namely peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM),
were calculated on the Y channel of the YCbCr space for objective evaluation. They are
formulated as

PSNR(ISR, IHR) = 10 · log 10 ×
(

L2

1
N ∑

N
i=1(ISR(i)− IHR(i))

2

)
, (17)

where L represents the maximum pixel, and N denotes the number of all pixels in ISR

and IHR.

SSIM(x, y) =
2uxuy + k1

u2
x + u2

y + k1
· σxy + k2

σ2
x + σ2

y + k2
, (18)

where x and y represent two images. σxy symbolizes the covariance between x and y. u
and σ2 represent the average value and variance. k1 and k2 denote constant relaxation
terms. Multi-adds and model parameters were utilized to evaluate the computational
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complexity [32,54]. In addition, the natural image quality evaluator (NIQE) was adopted to
validate the reconstruction of real-world images from Gaofen-1 and Gaofen-2 satellites [55].

4.2. Implementation Details

We conducted experiments on remote sensing image data with scale factors of ×2,
×3, and ×4. During training, we randomly cropped 48 × 48 patches from LR images and
extracted ground-truth references from corresponding HR images. We also employed
horizontal flipping and random rotation (90◦, 180◦ and 270◦) to augment training samples.
Table 1 presents the comprehensive hyperparameter setting of the cross-scale enhancement
transformer (CSET) module.

Table 1. Parameter setting of the CSET module in the HSTNet.

Heads Head Dim Hidden Size D MLP Dim Layers

Transformer Encoder 6 32 512 512 8
Transformer Decoder 6 32 512 512 1

We adopted the Adam optimizer [56] to train the HSTNet with β1 = 0.9, β2 = 0.99, and
ǫ = 10−8. The initial learning rate was set to 10−4, and the batch size was 16. The proposed
model was trained for 800 epochs, and the learning rate decreased by half after 400 epochs.
Both the training and testing stages were performed using the PyTorch framework, utilizing
CUDAToolkit 11.4, cuDNN 8.2.2, Python 3.7, and two NVIDIA 3090 Ti GPUs.

4.3. Comparison with Other Methods

To verify the effectiveness of the proposed HSTNet, we conducted comparative ex-
periments with some state-of-the-art (SOTA) competitors, namely SC [12], SRCNN [22],
FSRCNN [57], VDSR [24], LGCNet [30], DCM [31], CTNet [48], ESRT [40], ACT [41], and
TransENet [14]. Among these methods, SC [12], SRCNN [22], FSRCNN [57], VDSR [24],
ESRT [40], and ACT [41] are the methods proposed for natural image SR. LGCNet [30],
DCM [31], CTNet [48], and TransENet [14] are designed for RSISR. The experimental results
for the UCMerced dataset and AID dataset with the scale factors of ×2, ×3 and ×4 are
reported in Table 2.

4.3.1. Quantitative Evaluation

Evaluation with UCMerced dataset: Table 2 shows that the proposed HSTNet achieves
first place among competitors for the UCMerced dataset for all scale factors. Specifically,
the HSTNet improves the PSNR comparatively by 0.71 dB, 0.54 dB, and 0.60 dB for scale fac-
tor ×2 for LGCNet [30], DCM [31] and CTNet [48], respectively. The average PSNR values
of the proposed HSTNet over the second-best TransENet that employs a transformer mod-
ule are 0.16 dB, 0.15 dB and 0.12 dB when the scale factors are ×2, ×3 and ×4, respectively.
Additionally, the HSTNet outperforms LGCNet [30], DCM [31], and CTNet [48] in terms of
SSIM by 0.0183, 0.0027, and 0.0102 for scale factor ×3. Compared to ACT [41], which also
uses a transformer structure, the average PSNR obtained by the proposed method increased
by 0.31 dB, 0.27 dB, and 0.35 dB at scale factors of ×2, ×3 and ×4, respectively. Moreover,
Table 3 lists the mean PSNR of different methods on all 21 classes (All these 21 classes
of UCMerced dataset: 1—Agricultural, 2—Airplane, 3—Baseballdiamond, 4—Beach, 5—
Buildings, 6—Chaparral, 7—Denseresidential, 8—Forest, 9—Freeway, 10—Golfcourse, 11—
Harbor, 12—Intersection, 13—Mediumresidential, 14—Mobilehomepark, 15—Overpass,
16—Parkinglot, 17—River, 18—Runway, 19—Sparseresidential, 20—Storagetanks, and
21—Tenniscourt) of the UCMerced dataset when the scale factor is ×3. One can see that
the proposed HSTNet performs best in 14 scene classes, ranks second in 5 scene classes,
and third in 2 scene classes. The DCM [31] obtains the best PSNR in the other seven
categories. It is worth mentioning that the HSTNet shows more effective performance in
some scenes comprising prominent contours and rich edges, such as “Baseballdiamond”,
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“Buildings”, and “Overpass”. Overall, the mean PSNR in all 21 class scenes of the proposed
HSTNet is 0.55 dB higher than DCM [31].

Table 2. Comparative results for the UCMerced dataset and AID dataset. The best and the second-best
results are marked in red and blue, respectively.

Method Scale
UCMerced Dataset AID Dataset

PSNR SSIM PSNR SSIM

Bicubic ×2 30.76 0.8789 32.39 0.8906
SC [12] ×2 32.77 0.9166 32.77 0.9166
SRCNN [22] ×2 32.84 0.9152 34.49 0.9286
FSRCNN [57] ×2 33.18 0.9196 34.11 0.9228
VDSR [24] ×2 33.47 0.9234 35.05 0.9346
LGCNet [30] ×2 33.48 0.9235 34.80 0.9320
DCM [31] ×2 33.65 0.9274 35.21 0.9366
CTNet [48] ×2 33.59 0.9255 35.13 0.9354
ESRT [40] ×2 33.70 0.9270 35.15 0.9358
ACT [41] ×2 33.88 0.9283 35.17 0.9362
TransENet [14] ×2 34.03 0.9301 35.28 0.9374
Ours ×2 34.19 0.9338 35.35 0.9387

Bicubic ×3 27.46 0.7631 29.08 0.7863
SC [12] ×3 28.26 0.7971 28.26 0.7671
SRCNN [22] ×3 28.66 0.8038 30.55 0.8372
FSRCNN [57] ×3 29.09 0.8167 30.30 0.8302
VDSR [24] ×3 29.34 0.8263 31.15 0.8522
LGCNet [30] ×3 29.28 0.8238 30.73 0.8417
DCM [31] ×3 29.52 0.8394 31.31 0.8561
CTNet [48] ×3 29.44 0.8319 31.16 0.8527
ESRT [40] ×3 29.52 0.8318 31.34 0.8562
ACT [41] ×3 29.80 0.8395 31.39 0.8579
TransENet [14] ×3 29.92 0.8408 31.45 0.8595
Ours ×3 30.07 0.8421 31.61 0.8613

Bicubic ×4 25.65 0.6725 27.30 0.7036
SC [12] ×4 26.51 0.7152 26.51 0.7152
SRCNN [22] ×4 26.78 0.7219 28.40 0.7561
FSRCNN [57] ×4 26.93 0.7267 28.03 0.7387
VDSR [24] ×4 27.11 0.7360 28.99 0.7753
LGCNet [30] ×4 27.02 0.7333 28.61 0.7626
DCM [31] ×4 27.22 0.7528 29.17 0.7824
CTNet [48] ×4 27.41 0.7512 29.00 0.7768
ESRT [40] ×4 27.41 0.7485 29.18 0.7831
ACT [41] ×4 27.54 0.7531 29.19 0.7836
TransENet [14] ×4 27.77 0.7630 29.38 0.7909
Ours ×4 27.89 0.7694 29.57 0.7983

Evaluation with AID dataset: Table 2 reports the averaged evaluation results of
the proposed method in comparison to other methods for AID datasets for scale factors
of ×2, ×3, and ×4. One can see that the proposed HSTNet outperforms SRCNN [22],
FSRCNN [57], and VDSR [24] by 1.17 dB, 1.54 dB, and 0.58 dB for scale factors ×4 in terms
of PSNR values. It proves that the HSTNet ranks first with PSNR scores that are higher than
LGCNet [30] by 0.55 dB, 0.88 dB, and 0.96 dB for scale factors ×2, ×3, and ×4, respectively.
Compared to ESRT [40], which adopts a transformer structure, the average PSNR obtained
by the proposed method increased by 0.20 dB, 0.27 dB, and 0.39 dB at scale factors of
×2, ×3, and ×4, respectively. Compared to the second-best method, TransENet [14],
the HSTNet achieves a performance improvement of 0.16 dB and 0.0013 in PSNR and SSIM
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scores, respectively, for scale factor ×3. In contrast to the UCMerced dataset, the AID
dataset comprises 30 categories of scenes and a significantly larger number of images.
Table 4 reports a detailed performance comparison of different methods for scale factor
×4 on all 30 scene classes (All these 30 classes of AID dataset: 1—Airport, 2—Bareland,
3—Baseballdiamond, 4—Beach, 5—Bridge, 6—Center, 7—Church, 8—Commercial, 9—
Denseresidential, 10—Desert, 11—Farmland, 12—Forest, 13—Industrial, 14—Meadow, 15—
Mediumresidential, 16—Mountain, 17—Park, 18—Parking, 19—Playground, 20—Pond,
21—Port, 22—Railwaystation, 23—Resort, 24—River, 25—School, 26—Sparseresidential,
27—Square, 28—Stadium, 29—Storagetanks, 30—Viaduct) of the AID dataset. It can be
seen that the proposed HSTNet outperforms the other methods in 28 scene classes, while
TransENet [14] obtains the best PSNR scores in the remaining 2 categories. Although the
HSTNet ranks second in those two scene classes, its PSNR values are very close to the
TransENet [14]. Notably, the HSTNet has an overall average PSNR that is 0.48 dB higher
than TransENet [14].

4.3.2. Qualitative Evaluation

To further verify the advantages of the proposed method, the subjective results of
SR images reconstructed by the aforementioned methods are shown in Figures 6 and 7.
Figure 6 shows the reconstruction results of the above methods for the UCMerced dataset
by taking “airplane” and “runway” scenes as examples. Figure 7 shows the visual results
of the “stadium” and “medium-residential” scenes in the AID dataset. In general, the SR
results reconstructed by the proposed method possess sharper edges and clearer contours
compared with other methods, which verifies the effectiveness of the HSTNet.
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Figure 6. Subjective results for UCMerced dataset: (a) “Airplane91” scene with ×3 factor. (b) “Run-
way50” scene with ×4 factor.
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Table 3. Average PSNR of per-category for UCMerced dataset with the scale factor of ×3. The best and the second-best results are marked in
red and blue, respectively.

Class Bicubic SC [12] SRCNN [22] FSRCNN [57] LGCNet [30] DCM [31] CTNet [48] ESRT [40] ACT [41] TransENet [14] Ours

1 26.86 27.23 27.47 27.61 27.66 29.06 28.53 28.13 27.86 28.02 27.93
2 26.71 27.67 28.24 28.98 29.12 30.77 29.22 29.45 29.78 29.94 29.98
3 33.33 34.06 34.33 34.64 34.72 33.76 34.81 34.88 35.05 35.04 35.13
4 36.14 36.87 37.00 37.21 37.37 36.38 37.38 37.45 37.55 37.53 37.76
5 25.09 26.11 26.84 27.50 27.8 l 28.51 27.99 28.18 28.66 28.81 29.12
6 25.21 25.82 26.11 26.21 26.39 26.81 26.40 26.43 26.62 26.69 26.78
7 25.76 26.75 27.41 28.02. 28.25 28.79 28.42 28.53 28.97 29.11 29.27
8 27.53 28.09 28.24. 28.35 28.44 28.16 28.48 28.47 28.56 28.59 28.65
9 27.36 28.28 28.69 29.27 29.52 30.45 29.60 29.87 30.25 30.38 30.65
10 35.21 35.92 36.15 36.43 36.51 34.43 36.46 36.54 36.63 36.68 36.69
11 21.25 22.11 22.82 23.29 23.63 26.55 23.83 23.87 24.42 24.72 24.91
12 26.48 27.20 27.67 28.06 28.29 29.28 28.38 28.53 28.85 29.03 29.32
13 25.68 26.54 27.06 27.58 27.76 27.21 27.87 27.93 28.30 28.47 28.64
14 22.25 23.25 23.89 24.34 24.59 26.05 24.87 24.92 25.32 25.64 25.74
15 24.59 25.30 25.65 26.53 26.58 27.77 26.89 27.17 27.76 27.83 28.31
16 21.75 22.59 23.11 23.34 23.69 24.95 23.59 23.72 24.11 24.45 24.53
17 28.12 28.71 28.89 29.07 29.12 28.89 29.11 29.14 29.28 29.25 29.32
18 29.30 30.25 30.61 31.01 31.15 32.53 30.60 30.98 31.21 31.25 31.21
19 28.34 29.33 29.40 30.23 30.53 29.81 31.25 31.35 31.55 31.57 31.71
20 29.97 30.86 31.33 31.92 32.17 29.02 32.29 32.42 32.74 32.71 32.98
21 29.75 30.62 30.98 31.34 31.58 30.76 31.74 31.99 32.40 32.51 32.77

AVG 27.46 28.23 28.66 29.09 29.28 29.52 29.41 29.52 29.80 29.92 30.07
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Table 4. Average PSNR of per-category for AID dataset with the scale factor of ×4. The best and the second-best results are marked in red and
blue, respectively.

Class Bicubic SRCNN [22] FSRCNN [57] VDSR [24] LGCNet [30] DCM [31] CTNet [48] ESRT [40] ACT [41] TransENet [14] Ours

1 27.03 28.17 27.70 28.82 28.39 28.99 28.80 28.98 29.01 29.23 29.29
2 34.88 35.63 35.73 35.98 35.78 36.17 36.12 36.15 36.15 36.20 36.45
3 29.06 30.51 29.89 31.18 30.75 31.36 31.15 31.35 31.37 31.59 31.69
4 31.07 31.92 31.79 32.29 32.08 32.45 32.40 32.47 32.45 32.55 32.61
5 28.98 30.41 29.83 31.19 30.67 31.39 31.17 31.42 31.42 31.63 31.75
6 25.26 26.59 25.96 27.48 26.92 27.72 27.48 27.73 27.75 28.03 28.23
7 22.15 23.41 22.74 24.12 23.68 24.29 24.10 24.29 24.32 24.51 24.56
8 25.83 27.05 26.65 27.62 27.24 27.78 27.63 27.78 27.79 27.97 28.06
9 23.05 24.13 23.69 24.70 24.33 24.87 24.70 24.88 24.89 25.13 25.32
10 38.49 38.84 38.84 39.13 39.06 39.27 39.25 39.25 39.24 39.31 39.45
11 32.30 33.48 32.95 34.20 33.77 34.42 34.25 34.41 34.43 34.58 34.59
12 27.39 28.15 28.19 28.36 28.20 28.47 28.47 28.53 28.47 28.56 28.76
13 24.75 26.00 25.49 26.72 26.24 26.92 26.71 26.93 26.94 27.21 27.19
14 32.06 32.57 32.50 32.77 32.65 32.88 32.84 32.89 32.87 32.94 33.26
15 26.09 27.37 26.84 28.06 27.63 28.25 28.06 28.25 28.25 28.45 28.54
16 28.04 28.90 28.70 29.11 28.97 29.18 29.15 29.20 29.18 29.28 29.42
17 26.23 27.25 26.98 27.69 27.37 27.82 27.69 27.84 27.84 28.01 28.34
18 22.33 24.01 23.47 25.21 24.40 25.74 25.27 25.80 25.75 26.40 26.38
19 27.27 28.72 28.09 29.62 29.04 29.92 29.66 29.96 29.96 30.30 30.52
20 28.94 29.85 29.50 30.26 30.00 30.39 30.25 30.39 30.38 30.53 30.79
21 24.69 25.82 25.40 26.43 26.02 26.62 26.41 26.62 26.61 26.91 27.18
22 26.31 27.55 27.12 28.19 27.76 28.38 28.19 28.40 28.40 28.61 28.76
23 25.98 27.12 26.77 27.71 27.32 27.88 27.72 27.90 27.89 28.08 28.22
24 29.61 30.48 30.22 30.82 30.60 30.91 30.83 30.92 30.92 31.00 31.27
25 24.91 26.13 25.66 26.78 26.34 26.94 26.75 26.96 26.99 27.22 27.43
26 25.41 26.16 25.88 26.46 26.27 26.53 26.46 26.55 26.54 26.63 26.87
27 26.75 28.13 27.62 28.91 28.39 29.13 28.94 29.17 29.15 29.39 29.72
28 24.81 26.10 25.50 26.88 26.37 27.10 26.86 27.14 27.10 27.41 27.68
29 24.18 25.27 24.73 25.86 25.48 26.00 25.82 26.01 26.02 26.20 26.43
30 25.86 27.03 26.54 27.74 27.26 27.93 27.67 27.92 27.95 28.21 28.48

AVG 27.3 28.4 28.03 28.99 28.61 29.17 29.03 29.18 29.19 29.38 29.57
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Figure 7. Subjective results for AID dataset: (a) “Stadium_23” scene with ×3 factor. (b) “Mediumresi-
dential_100” scene with ×4 factor.

4.4. Results on Real Remote Sensing Data

Real images acquired by GaoFen-1 (GF-1) and GaoFen-2 (GF-2) satellites were em-
ployed to assess the robustness of the HSTNet. The spatial resolutions of GF-1 and GF-2
are 8 and 3.2 m/pixel, respectively. Three visible bands are selected from GF-1 and GF-
2 satellite images to generate the LR inputs. The pre-trained DCM [31], ACT [41], and
the proposed HSTNet models for the UCMerced dataset are utilized for SR image recon-
struction. Figures 8 and 9 demonstrate the reconstruction results of the aforementioned
methods on real data in some common scenes including river, factory, overpass, and paddy
fields. One can see that the proposed HSTNet can obtain favorable results. Compared
with DCM [31] and ACT [41], the reconstructed images of the proposed HSTNet achieved
the lowest NIQE scores in all the four common scenes. Although the pixel size of these
input images is different from the LR images in the training set, which are 600 × 600 and
256 × 256 for real-world images and training images, respectively, the HSTNet can still
achieve good results in terms of visual perception qualities. It verifies the robustness of the
proposed HSTNet.

4.5. Ablation Studies

Ablation studies with the scale factor of ×4 were conducted on the UCMerced
dataset to demonstrate the effectiveness of the proposed fundamental modules in the
HSTNet model.

4.5.1. Ablation Studies on the LFE Module

Number of LFE and HSFE modules: Table 5 presents a comparative analysis of
varying quantities of LFE and HSFE modules. It indicates that when adopting two LFE
and 2 HSFE modules, the model has the smallest number of parameters and computation,
but the model has the lowest PSNR and SSIM values. The results indicate that the proposed
HSTNet achieves the highest PSNR and SSIM when utilizing three LFE and five HSFE
modules. When employing three LFE and eight HSFE modules, the model has the largest
number of parameters and computation, and its performance is not optimal. Therefore,
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considering the performance of the model and the computational complexity, we adopted
three LFE and five HSFE modules in the proposed method. The results confirm the
effectiveness of the LFE and HSFE modules in the proposed model, as well as the rationality
of the number of LFE and HSFE modules.

Input Bicubic × 4 HSTNet ×4

(b)

Input Bicubic × 3 HSTNet ×3

a

ACT ×3DCM ×3

DCM ×3 ACT ×3

NIQE 6.58 6.30 6.18 5.58

NIQE 7.91 7.79 6.65 5.90

Figure 8. Subjective results on real GaoFen-1 satellite data: (a) “River” with ×3 factor. (b) “Factory”
with ×4 factor.

Input Bicubic × 4 HSTNet ×4

(b)

Input Bicubic × 3 HSTNet ×3

a

DCM ×3 ACT ×3

DCM ×3 ACT ×3

NIQE 9.33 7.67 7.37 7.23

NIQE 8.67 8.49 7.80 7.73

Figure 9. Subjective results on real GaoFen-2 satellite data: (a) “Overpass” with ×3 factor. (b) “Paddy
fields” with ×4 factor.

Effects of the HSFE module: We devised the HSFE module in the proposed LFE
module to exploit the recursive information inherent in the image. We conducted further
ablation studies by substituting the HSFE module with widely used feature extraction
modules in SR algorithms, namely RCAB [27], CTB [48], CB [58], and SSEM [45] to validate
the effectiveness of the HSFE module. Among them, SSEM [45] is also used to mine
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scale information. As presented in Table 6, the HSFE module outperforms the other
feature extraction modules in terms of PSNR and SSIM, demonstrating its effectiveness in
feature extraction. Meanwhile, it is also competitive in terms of parameter quantity and
computational complexity.

Table 5. Ablation analysis of the number of LFE and HSFE modules (the best result is highlighted
in bold).

Scale Numbers of LFE Numbers of HSFE PSNR SSIM Params Multi-Adds

×4 2 2 27.57 0.7546 30.2M 73.6G
×4 2 5 27.72 0.7603 31.9M 135.9G
×4 2 8 27.61 0.7566 33.6M 205.1G
×4 3 2 27.58 0.7542 40.8M 95.5G
×4 3 5 27.89 0.7694 43.4M 194.4G
×4 3 8 27.73 0.7608 46.0M 292.8G

Table 6. Ablation analysis of different feature extraction modules in LFE module (the best result is
highlighted in bold).

Scale RCAB CTB CB SSEM HSFE PSNR SSIM Params Multi-Adds

×4 ✓ ✗ ✗ ✗ ✗ 26.33 0.7010 41.2M 112.0G
×4 ✗ ✓ ✗ ✗ ✗ 27.36 0.7451 40.3M 75.1G
×4 ✗ ✗ ✓ ✗ ✗ 27.51 0.7510 45.7M 275.2G
×4 ✗ ✗ ✗ ✓ ✗ 27.61 0.7561 42.5M 160.0G
×4 ✗ ✗ ✗ ✗ ✓ 27.89 0.7694 43.4M 194.4G

4.5.2. Ablation Studies on the CSET Module

Number of CSET modules: The CSET module is designed to learn the dependency
relationship across long distances between features of different dimensions. To validate the
effectiveness of the proposed CSET modules, we conducted ablation experiments using
varying numbers of CSET modules. Table 7 proves that the configuration of three CSET
modules performs the best in terms of PSNR and SSIM. The features of low-dimension
space are transmitted more to the high-dimension space, reducing the difficulty of opti-
mization and facilitating the convergence of the deep model. The aforementioned results
demonstrate the effectiveness of the CSET module in enhancing the representation of
high-dimensional features.

Effects of the CSTA block: The CSTA [41] block is introduced to enable the CSET
module to utilize the recurrent patch information of different scales in the input image.
To verify the effectiveness of the CSTA module, we analyzed the composition of the
transformer. Table 8 presents the comparative results of two different transformers. It
proves that the CSTA block is beneficial to improve the performance of the HSTNet.

Table 7. Ablation analysis of different feature extraction modules in the LFE module (the best result
is highlighted in bold).

Scale Transformer-3 Transformer-2 Transformer-1 Transformer-0 PSNR SSIM

×4 ✗ ✗ ✗ ✗ 27.54 0.7522
×4 ✓ ✗ ✗ ✗ 27.61 0.7562
×4 ✓ ✓ ✗ ✗ 27.73 0.7618
×4 ✓ ✓ ✓ ✗ 27.89 0.7694
×4 ✓ ✓ ✓ ✓ 27.50 0.7509
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Table 8. Ablation analysis of the CSTA block. The best performances are highlighted in bold.

Transformer PSNR SSIM

MHSA + FFN 27.77 0.7630
MHSA + FFN + CSTA 27.89 0.7694

5. Conclusions and Future Work

In this paper, we present a hybrid-scale hierarchical transformer network (HSTNet) for
remote sensing image super-resolution (RSISR). The HSTNet contains two crucial compo-
nents, i.e., a hybrid-scale feature exploitation (HSFE) module and a cross-scale enhancement
transformer (CSET) module. Specifically, the HSFE module with two branches was built
to leverage the internal recurrence of information both in single and cross scales within
the images. Meanwhile, the CSET module was built to capture long-range dependencies
and effectively mine the correlation between high-dimension and low-dimension features.
Experimental results on two challenging remote sensing datasets verified the effectiveness
and superiority of the proposed HSTNet. In the future, more efforts are expected to simplify
the network architecture and design a more effective low-dimensional feature extraction
branch to improve RSISR performance.
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Abstract: In surveillance and monitoring systems, the use of mobile vehicles or unmanned aerial
vehicles (UAVs), like the drone type, provides advantages in terms of access to the environment with
enhanced range, maneuverability, and safety due to the ability to move omnidirectionally to explore,
identify, and perform some security tasks. These activities must be performed autonomously by
capturing data from the environment; usually, the data present errors and uncertainties that impact
the recognition and resolution in the detection and identification of objects. The resolution in the
acquisition of data can be improved by integrating data sensor fusion systems to measure the same
physical phenomenon from two or more sensors by retrieving information simultaneously. This paper
uses the constant turn and rate velocity (CTRV) kinematic model of a drone but includes the angular
velocity not considered in previous works as a complementary alternative in Lidar and Radar data
sensor fusion retrieved using UAVs and applying the extended Kalman filter (EKF) for the detection
of moving targets. The performance of the EKF is evaluated by using a dataset that jointly includes
position data captured from a LiDAR and a Radar sensor for an object in movement following a
trajectory with sudden changes. Additive white Gaussian noise is then introduced into the data to
degrade the data. Then, the root mean square error (RMSE) versus the increase in noise power is
evaluated, and the results show an improvement of 0.4 for object detection over other conventional
kinematic models that do not consider significant trajectory changes.

Keywords: data sensor fusion; extended Kalman filter; lidar; radar

1. Introduction

In surveillance and monitoring systems, the use of unmanned aerial vehicles (UAVs),
such as drones or mobile vehicles, provides advantages in terms of access to the envi-
ronment for exploration like augmented range, maneuverability, and safety due to their
omnidirectional displacement capacity. These tasks must be performed autonomously by
capturing information from sensors in the environment at scheduled or random points
at specific times and areas. The collected data present errors and uncertainties that make
object recognition difficult and depend on the resolution of the sensors for detection and
identification. Data acquisition resolution can be improved by integrating sensor data fu-
sion systems to measure the same physical phenomenon by capturing information from two
or more sensors simultaneously and applying filtering or pattern recognition techniques to
obtain better results than those obtained with only one sensor

Sensor data fusion consists of different techniques, inspired by the human cognitive
ability to extract information from the environment by integrating different stimuli. In
the case of sensor fusion, measurement variables are integrated through a set of sensors,
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often different from each other, that make inferences that cannot be possible from a single
sensor [1].

The fusion of Radar (Radio Detecting and Ranging) and LiDAR (Light Detection
and Ranging or Laser Imaging Detection and Ranging) sensor data presents a better
response considering two key aspects: (i) the use of two coherent systems that allow
an accurate phase capture and (ii) the improvement in the extraction of data from the
environment, with the combination of two or more sensors arranged on the mobile vehicle
or UAV [1,2]. This integration allows the error to be decreased in the detection of objects in
a juxtaposition relationship by determining the distances through the reflection of radio
frequency signals in the Radar case and through the reflection of a light beam (photons)
for the case of the LiDAR sensor, generating a double observer facing the same event, in
this case, the measurement of proximity and/or angular velocity [3,4]. Thus, the choice
of Radar and LiDAR sensors requires special care, mainly about technical characteristics
and compatibility [5,6], coherence in range, and data acquisition. The above allows a
complementary performance to be achieved with its associated element in data fusion,
facilitating a better understanding of the three-dimensional environment that feeds the
data processing system integrated into the UAV [7] or at a remote site.

A proper sensor fusion of LiDAR and Radar data must rely on the use of estimators
to achieve higher consistency in the measurements to mitigate the uncertainties by using
three parameters: Radar measurements, LiDAR measurements, and Kalman filtering. This
improves the estimation of the measured variable. The Kalman filtering technique allows
the description of the real world using linear differential equations to be expressed as a
function of state variables. In most real-world problems, the measurements may not be a
linear function of the states of the system. However, applying extended Kalman filtering
(EKF) techniques counteracts this situation by modeling the phenomenon using a set of
nonlinear differential equations, Xk, which describe the dynamics of the system. The EKF
allows “projecting” in time the behavior of the system to be filtered, with variables that
are non-measurable but are calculable from the measurable variables. Then, by predicting
the future data and their deviation concerning the measured data, the Kalman gain, Kk, is
calculated, and it continuously adapts to the dynamics of the system. Finally, updating
the matrix state xk and the covariance matrix Pk associated with the filtered system. This
process is graphically described in Figure 1.

Figure 1. The schematic diagram for an extended Kalman filter.

In this work, sensor data fusion was performed for target tracking from a UAV, using an
EKF and taking into consideration the results from data fusions performed in autonomous
driving. The kinematic modeling Constant Turn Rate and Velocity (CTRV) [8] was taken
as a reference, and this model includes in its description the angular velocity variable,
provided by the Radar, a parameter that introduces an improvement in omnidirectional
motion detection.

This paper shows the performance of an implementation of data sensor fusion using
LiDAR and Radar through an EKF for the tracking of moving targets, taking into account
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changes in their direction and trajectory, to generate a three-dimensional reconstruction
when the information is captured from a UAV.

2. Dynamic Model of UAV

The UAV dynamics were obtained from the 2D CTRV model [8] for vehicle and
pedestrian detection on highways. It is assumed that the possible movements of the
elements around the UAV are not completely arbitrary and not holonomous, in which
case there will be displacements in a bi-dimensional plane. The curvilinear model (CTRV)
includes angular velocities and angular movements in its modeling, which allows a better
description of the changes in the direction and velocity of an object in a linear model. The
CTRV model is shown in Figure 2.

Figure 2. CTRV model for a moving object.

The velocity variable provides the system model the ability to calculate the target’s
lateral position variations for a correct prediction of the future position of the target, thus
starting from initial positions x and y and projecting this location over time, defined as
x + ∆x and y + ∆y for the target as shown in Figure 3.

Figure 3. Position prediction through the CTRV model.

The CTRV model for the UAV system’s moving target in the three-dimensional case
determines the projection of the position of the target xi+1 on the axis, starting from the
values of the angular frequency w and the angle θ [9–11] for xi, and equally for yi and its
position projection. Therefore, the variables of interest in the system are the position x
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and y; these are calculated by modeling their projection through the frontal velocity v, the
angle θ formed between the Radar and the target, the angular frequency w of the target,
and finally the angular frequency wd of the UAV. The set of state variables involved in the
system is the following:

x = [x, y, v, θ, w, wd] (1)

The kinematic equations describing the change from an initial position of the UAV to
a future position are as follows:

xi+1 = xi +
[
vobject − vdrone

]
· ∆T (2)

yi+1 = yi +
[
vobject − vdrone

]
· ∆T (3)

The state variables are the frontal velocity, the theta angle, the target angular velocity,
and the angular velocity of the UAV.

v = w · ∆T
θ = 0
w = 0
wd = 0

(4)

Because the data sensor fusion operation is bidimensional, the CTRV model does
not include motion in the position around the z-axis in its state variables. To maintain a
bi-dimensional analysis, the UAV velocity [10] is projected as

vx = V cos φ (5)

vy = V sin φ (6)

In this way, φ represents the elevation of the UAV concerning the sensed target, this
angle allows the velocities of the drone to be projected in the xz plane, and the x + ∆x
or y + ∆y to be determined, as shown in Figure 3, concerning the position prediction. To
simplify the model and to have a congruence of the LiDAR and Radar models in the sensor
data fusion, a data acquisition method is proposed in which the UAV only uses pitch
(rotation on the lateral Y axis) and yaw (rotation on the vertical Z axis) movements, and
their projection in a three-dimensional coordinate system. These motions are included in
the CTRV model through the projection of the UAV velocity vd, through the angles φ and θ,
as shown below.

vd =

⎡
⎢⎢⎣

Vdx

Vdy

Vdz

Wdz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

V0 cos φ cos θ

V0 cos φ sin θ

V0 sin φ

0

⎤
⎥⎥⎦ (7)

The difference between the estimated position and the actual position of the target is
determined by the displacement generated by w and θ, i.e., (∆T·w + θ) [8], so the space
and velocity projections are also a function of these variations. The velocity equations are
obtained from xi and yi, which correspond to the first derivative, such that vdx and vdy are
expressed as

.
xi+1 = v

w [sin(∆T · w + θ)− sinθ]− vdx cos θ cos φ
.
yi+1 = v

w [cos θ − cos(∆T · w + θ)]− vdy cos θ sin φ

a =
.

w
.
θ = 0
.

w = 0
.

wd = 0

(8)

When the target has an initial angular velocity w = 0, the expressions change to [8]
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xi+1 = xi + v cos θ · ∆T − vdx cos θ cos φ · ∆T
yi+1 = yi + v sinθ · ∆T − vdx cos θ sinφ · ∆T

v = 0
θ = 0
w = 0
wd = 0

(9)

The EKF performs the filtering in a bi-dimensional plane formed by the intersection of
the range of the LiDAR and Radar sensor to achieve a three-dimensional reconstruction
of the sensed target and a rotation is accomplished on the x-axis of the sensors, using the
cylindrical coordinates as orientation. Figure 4 shows the dynamics between the UAV for
generating a three-dimensional reconstruction from bi-dimensional data gathered by the
sensors and the target in the XYZ plane.

Figure 4. Three-dimensional reconstruction with UAV.

For the data fusion design, the RPLIDAR Slam S1 LiDAR sensor and the Positio2go
BGT24MTR12 Radar were used as references. The LiDAR sensor operates in 2D with
rotation capability, delivering data for a 360◦ scan, and the Radar achieves a range of 10 m.
The range of the sensors according to the implementation of data fusion in the UAV is
shown in Figure 5.

Figure 5. LiDAR and Radar sensor range.

Now, to improve the estimation of the measured variable from the noisy sensors, the
Kalman filter is implemented through sequential steps: (i) the estimation or prediction
of the system behavior from the nonlinear equations; (ii) the calculation of the Kalman
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gain to reduce the error of the prediction of the current state versus the previous state, and
(iii) the update of the measurement matrix, as well as the covariance associated with the
uncertainty of the system. The representation from the selected state variables corresponds
to the following equation:

.
x = f (x) + w (10)

where
.
x is the vector of the system states and f (x) is a nonlinear function of the states.

This state–space model of the system allows us to determine the future states and the
output is obtained by filtering the input signal. The Kalman filter performs estimations
and corrections iteratively, where the possible errors of the system will be reflected in the
covariance values present between the measured values and the values estimated by the
filter. The forward projection of the covariance error has the following representation:

Mk = ΦkPkΦT
k + Qk (11)

The system update is implemented according to the following equations:

Kk = Mk HT(HMk HT + Rk)
−1

(12)

Pk = (I − Kk H)Mk (13)

zk = Hx + Vk (14)

xk = Φkxk−1 + Kk(zk − HΦkxk−1) (15)

Based on these state variables, the fundamental matrix for the extended Kalman filter
is calculated and must satisfy the condition

F =
δ f (x)

δx

∣∣∣∣
x=x̂

(16)

Φk = I + F · ∆T (17)

Making α = ∆T + θ, β = –sinθ + sinα, and χ = –cosθ + cosα in Equation (18), the
fundamental matrix is

Φk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 β
w

v
w χ ∆Tv

w

[
cos α − v

w2 β
]

−vdsinθcosΦ

0 1 −χ
w

v
w β ∆Tv

w

[
sin α + v

w2 χ
]

vdcosθsinΦ

0 0 1 ∆T 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

When the angular velocity of the target is zero, the fundamental matrix reduces to the
following matrix:

Φk =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 cos θ · ∆T −v · sinθ · ∆T 0 −vdsinθcosφ

0 1 sinθ · ∆T v · cos θ · ∆T 0 vdcosθsinφ

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

The matrix associated with the system noise Qk was calculated from the discrete
output matrix Gk. The matrix must consider the output variables on which the Kalman
filter can act. For the proposed model, the angular acceleration of the target has been taken
into account, as well as the angular velocity and acceleration of the UAV. The output matrix
Gk for the EKF is presented below.
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Gkμ =

Ts∫

0

Φk(τ) · G · d(τ) (20)

Gkμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∆T2

2 cos θ 0 − cos θ cos φ · ∆T
∆T2

2 sinθ 0 − cos θ sin φ · ∆T
∆T 0 0
0 0 0
0 ∆T 0
0 0 ∆T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎣

μa

μw

μwd

⎤
⎦ (21)

The noise matrix from the output matrix is calculated through the following expres-
sion:

Qk = Gk · E[μ · μT ] · GT
k (22)

where

E
[
μ · μT

]
=

⎡
⎣

σ2
a 0 0

0 σ2
w 0

0 0 σ2
wd

⎤
⎦ (23)

With γ = cosθ cosϕ, ν = cosϕ sinϕ, η = sinθ sinϕ, κ = sinθ cosθ, σ = cosθ sinϕ, λ = cosϕ

sinϕ, the noise matrix is defined as

Qk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∆T2

2 σa cos θ
)2

+ (∆T · σwdγ)2 ∆T4

4 σa
2κ + (∆T · σwd cos θ)2λ ∆T3

4 σa
2κ 0 0 −(∆T · σwd)

2γ
(

∆T2

2 σasinθ
)2

+ (∆T · σwd cos θ)2ν ∆T4

4 σa
2κ + (∆T · σwdσ)2 ∆T3

2 σa
2sinθ 0 0 −(∆T · σwd)

2η

∆T3

2 σa
2 cos θ ∆T3

2 σa
2sinθ ∆T2σ2

a 0 0 0
0 0 0 0 0 0
0 0 0 0 ∆T2

2 σ .
w 0

−(∆T · σwd)
2γ −(∆T · σwd)

2 cos θ sin φ 0 0 0 −(∆T · σwd)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

Regarding the variables obtained from the sensors, it should be taken into account
that the LiDAR and Radar sensors provide the measurements in different formats. For
the LiDAR case, position data are retrieved in rectangular coordinates for x and y that
correspond to the first two variables of the state vector. Since xk has six state variables,
the measurement matrix for LiDAR data processing should operate only on the x and y
variables, making the product between the state vector xk and H, conformable, i.e.,

HL =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(25)

For Radar, the measurement matrix changes to

HR =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

(26)

The measurement error covariance matrix of the LiDAR sensor, obtained from the
statistical analysis of the dataset obtained from this sensor, is as follows:

Rk−L =

[
0.0222 0

0 0.0222

]
(27)

Rk−L is obtained from the variance in the LiDAR dataset. Likewise, the measurement
error covariance matrix of the Radar sensor obtained is
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Rk−R =

⎡
⎢⎢⎢⎢⎣

0.088 0 0 0 0
0 0.00088 0 0 0
0 0 0.088 0 0
0 0 0 0.0088 0
0 0 0 0 0.08

⎤
⎥⎥⎥⎥⎦

(28)

These covariance values are directly related to the resolution and reliability of both
the LiDAR and the Radar sensors. In the LiDAR case, the uncertainty is present in its
measurement of the target distance, measured and represented as x and y coordinates,
while for the Radar, this uncertainty is found in this same measurement, but is represented
as a vector distance of magnitude ρ and angle θ. Likewise, the covariance matrix for the
Radar includes the estimated velocity at the target.

3. Results and Discussion

The EKF filter was implemented under numerical evaluation using Matlab®. To
determine its performance, a dataset combining position measurements from a LiDAR and
Radar sensor for a pedestrian and real position measurements for the pedestrian were used,
and with these results, an estimation of the performance was obtained using the RMSE [12].
To evaluate the robustness of the model, the dataset was contaminated with different levels
of additive white Gaussian noise (AWGN).

The system was initialized by predefining values for the state matrix as shown in
Figure 6, as well as the fundamental matrix, the system covariance matrix, and the noise
matrix. Each new LiDAR or Radar sensor input triggers the filtering, starting by deter-
mining the time-lapse DT concerning the previous measurement. Next, the state matrix
is estimated using the set of Equations (8) or (9) when w = 0, the fundamental matrix
according to Equations (18) or (19) if w = 0, the noise matrix given by (24), and the system
covariance matrix as given by Equation (11). Next, the configuration of the measurement
and uncertainty matrices, (25) and (27) for the LiDAR case and (26) and (28) for the Radar
case, is performed. The Kalman gain given by Equation (13) is determined, and, finally,
an updating of the measurement matrix given by (15), as well as the system and state
covariance matrix, is achieved.

Figure 6. Schematic for EKF implementation.
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The CTRV model proposed by [8] in the context of autonomous driving was designed,
taking as reference highways and locations commonly used by automotive vehicles. In
these scenarios, the tangential velocity changes to the sensors are presented to a lesser extent
concerning the same scenario, but with measurements taken from a UAV. This behavior
is accentuated when it is necessary to perform a three-dimensional reconstruction of the
moving target. The CTRV model developed in this work includes the angular velocity of
the drone, modifying the fundamental matrix of the system, as well as the noise matrix
associated with the system, and a favorable response of the filter to the newly established
changes was observed.

To evaluate the response of the x and y position variables to measurements contami-
nated with noise, the equations of the CTRV model were implemented in Matlab®, and a
sweep of the position variables contaminated with AWGN was performed. The response
of the x and y state variables of the EKF to these contaminated measurements is shown in
Figure 7.

Figure 7. Response of the EKF in the state variables (a) x and (b) y to measurements contaminated
with AWGN. Source: authors.

The response of the EKF to significant changes in the angular velocity of the target,
represented as a change in the direction of the trajectory on the x-axis, is presented below.
The EKF succeeds in predicting the target (green band), even at the point of greatest
deflection. The zoom of the filter’s response to the change in trajectory is shown in Figure 8.
The EKF was tested with the help of a dataset that provides 1225 positions and angles
from simultaneous Radar and LiDAR measurements, where the Radar sensor provides the
distance along with the angle of displacement, concerning the horizontal of the Radar, and
also the angular velocity detected by the Radar; the LiDAR sensor gives the position in x
and y coordinates. This dataset was contaminated with AWGN by increasing the noise
power progressively and testing the EKF.
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Figure 8. EKF response to trajectory changes in the moving target.

The representation of the real data versus the measured data from the Radar and
LiDAR sensors is visualized in Figure 9.

Figure 9. The plot of x and y position values for a 16 dB AWGN-contaminated LiDAR and Radar fusion.
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To draw a comparison with other fusion models with Radar data, the root mean
square error (RMSE) was computed, and it was possible to validate the effectiveness of
the proposed CTRV model against fusions of previously used sensor data. The root mean
square error is reduced from 0.21 to 0.163 in terms of the linear model; however, in contrast
to the state-of-the-art [13] the unscented Kalman filter (UKF) maintains a better response
compared to EKF based on the CTRV model. The response of the EKF to AWGN variations
in the input data is presented below.

Figure 10 shows that the EKF acts by reducing the difference between the real values
(red signal) and the values contaminated with Gaussian noise (blue signal). In [13], the
authors state that the RMSE response can be improved with the unscented Kalman filter;
however, it should be noted that this filter implies a higher computational complexity
concerning the EKF. On the other hand, the response of the KF with a linear model and
increasing AWGN is shown in Figure 11.

Figure 10. RMSE vs. AWGN in CTRV model.
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Figure 11. RMSE vs. AWGN in the linear model.

4. Conclusions

An architecture for LiDAR and Radar sensor data fusion through the extended Kalman
filter model was implemented based on the CTRV model and the angular velocity projection
of a UAV (a parameter not identified in related previous research). The robustness against
trajectory changes for a moving target was demonstrated and determined by the angular
velocity and angle of the target concerning the UAV provided by the LiDAR and Radar
sensor. The evaluation of this model from the dataset allowed an accurate tracking of the
target in the face of position changes. In CTRV modeling, the angle of radar and angular
velocity of drone, when working together ensure a better response of the EKF. In the review
of the state of the art, no references have been found that include the angular velocity of the
drone. The projection of the UAV angular velocity on an xz-plane allows a bi-dimensional
analysis to be performed, as well as the modeling of the drone–moving target system,
without negatively affecting the EKF response.

The CTRV model proposed in this article for the drone–moving target system was
validated by numerical analysis using real data captured from LiDAR and Radar sensors.
In future work, when the implemented system in a UAV including the kinematic proposed
model requires a performance validation of the data sensor fusion using the EKF, the
implementation of the EKF algorithm must be evaluated in a Field-Programmable Gate
Array (FPGA) or System-on-Chip module due to their parallel processing capacity.
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Abstract: The ionospheric F2 layer is the essential layer in the propagation of high-frequency radio
waves, and the peak electron density height of the ionospheric F2 layer (hmF2) is one of the important
parameters. To improve the predicted accuracy of hmF2 for further improving the ability of HF
skywave propagation prediction and communication frequency selection, we present an interpretable
long-term prediction model of hmF2 using the statistical machine learning (SML) method. Taking
Moscow station as an example, this method has been tested using the ionospheric observation data
from August 2011 to October 2016. Only by inputting sunspot number, month, and universal time into
the proposed model can the predicted value of hmF2 be obtained for the corresponding time. Finally,
we compare the predicted results of the proposed model with those of the International Reference
Ionospheric (IRI) model to verify its stability and reliability. The result shows that, compared with
the IRI model, the predicted average statistical RMSE decreased by 5.20 km, and RRMSE decreased
by 1.78%. This method is expected to provide ionospheric parameter prediction accuracy on a
global scale.

Keywords: ionosphere; peak height of F2 layer; hmF2; machine learning; prediction

1. Introduction

The ionosphere is the atmosphere between 60 km and 1000 km above the Earth’s
surface. Due to its electrical and ionized structure, and its complex temporal and spatial
variability, it is of significant importance for its high frequency (HF) [1]. It influences sky
waves, challenging radio propagation and wireless communication [2]. hmF2 is an impor-
tant parameter of the F2 layer in the ionosphere, which serves as the basis for predicting
the usable frequency [3] by reflecting the ionosphere [4]. Namely, usable frequency and
propagation loss [5] are a function of hmF2, which indicates the height characteristics and
changes of the ionospheric F2 layer [6]. Therefore, a reliable modeling method of hmF2
will help in propagation prediction, frequency selection, and spectrum management for
HF communication systems [7]. Moreover, estimating and predicting the characteristics of
hmF2 is vital for identifying adverse space weather [8] and hmF2 is a major aeronautical
parameter involved in aeronautical [9] and ionospheric electrodynamic [10] studies. In
general, the hmF2 can be observed at the sounding station using ionospheric sounders [11].
Without sounding stations, hmF2 can be predicted based on the ionospheric models that
provide helpful empirical values for educators, engineers, and scientists.

As an internationally recognized standard, the International Reference Ionosphere
(IRI) provides ionospheric parameters [12] and is often used as a benchmark to evaluate the
performance of new ionospheric prediction models. Similar to critical frequency and the
propagation factor, the modeling methods and models for predicting hmF2 are continuously
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developing. In order to improve the prediction performance of the ionospheric model,
many new methods have constantly been introduced by experts at home and abroad.

For example, based on the empirical orthogonal function, Zhang et al. [13,14] and
Yu et al. [15] constructed a global and Chinese ionospheric hmF2 prediction model, re-
spectively, and the results were superior to the IRI model. Themens [16] proposed an
ionospheric empirical model of the Canadian high Arctic. Compared with the IRI model,
the prediction error of hmF2 of this model was reduced by 3~9 km. Sai et al. established
a two-dimensional ionospheric model based on the artificial neural network (ANN) [17]
and improved it [18], which can more accurately predict the detailed changes of hmF2
compared with the IRI model. Li et al. [19] established a global ionospheric model based on
the improved ANN technology based on the genetic algorithm, which has better temporal
and spatial characteristics of the global or regional ionosphere.

To further improve the hmF2 prediction accuracy, we propose an explicable long-term
method of hmF2 based on the statistical machine learning (SML) method and the correlation
between hmF2 and the solar activity index. The structure is arranged as follows: firstly, the
paper elaborates on the SML method, briefly introduces the data required for modeling,
and establishes a long-term prediction model for hmF2 based on this data; next, the model
prediction results are analyzed, followed by a discussion of the model and a conclusion of
the entire paper.

2. Materials and Methods

2.1. Method

Machine learning is an interdisciplinary field that uses probabilistic models to analyze
and predict data based on provided data [20]. The idea behind machine learning’s data
processing is simple to understand, and the process is straightforward. Unlike the black-box
algorithm, the model parameters determined using SML methods have explainable and
transparent meanings [21]. For example, SML algorithms can be used to solve specific
functional analytic expressions, which deep learning algorithms such as artificial neural
networks cannot do [22]. Therefore, statistical machine learning is widely used to model
ionospheric parameters. Using SML to reconstruct the ionospheric parameter hmF2 model,
it is indispensable to determine the algorithm, strategy, and model with hmF2 data as the
core and solve four problems in the process of machine learning:

(1) What data are needed? In machine learning, data are central. The paper is carried
out using the data of the median value (the median of each month measured by the hour)
calculated from the ionospheric hmF2 observation data of the Moscow station;

(2) How is the model chosen? The selection model finds the mapping relationship
between input and output variables. The model should be based on analyzing input and
output variables’ characteristics. Ionospheric parameters are affected by solar activities,
and there are seasonal, semi-annual, annual, and more subtle changes [23]. Therefore,
to establish the hmF2 long-term prediction model, it is necessary to find the mapping
relationship between hmF2 and solar activity index and time;

(3) How is the model determined? The model needs to be determined based on
the relationship between the independent and target-dependent variables. Here, the
relationship between hmF2 and solar activity index and time is determined by regression
analysis under the least square;

(4) How is the model evaluated? The discrepancy between the sample’s real output
and the learner’s actual predicted output is called an “error”. “Training error” or “empirical
error” is the learner’s error on the training set. “Generalization error” refers to the learner’s
error on the new sample. Generally, it is desirable to obtain a model with low generalization
error. Therefore, the hmF2 data are divided into three parts: training data, verification
data, and test data, using training data to train the model and validation data to select and
adjust the model. Test data are used to represent the generalization ability of the model [24].
Because of the ionosphere’s prominent time-varying characteristics, this paper uses the
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relative root mean square error (RRMSE) as the general evaluation standard to evaluate
the model.

In brief, this paper uses the RRMSE analysis strategy as the model selection and
evaluation criteria to establish the long-term prediction model of hmF2 according to the
correlation between the Moscow station’s hmF2 median value data and solar activity
and time. Finally, the validity and reliability of the prediction model are verified by the
observation data and IRI model. According to the learning process of SML, the following is
the process of data acquisition, model training, validation, and testing.

Figure 1 shows the hmF2 modeling process according to SML:

Figure 1. Modeling flowchart based on SML.

(1) The hmF2 are closely related to solar activity, and there are seasonal, semi-annual,
and annual variations. According to the above characteristics, this paper determines the
training model set.

(2) The solar activity index, including the solar radio wave flux with a wavelength of
10.7 cm, the number of sunspots, and the strongest single line in the ultraviolet band are
selected. The highest power index of solar activity parameters and the highest harmonic
number in the trigonometric function is also selected.
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(3) Data from August 2011 to December 2015 are used to train, and data from February,
March, May, June, August, and September 2016 are used to validate.

(4) The relative root mean square error calculated and recording between the verified
and actual data are calculated.

(5) Whether all the highest harmonic numbers in the trigonometric function are tra-
versed is checked. If the traversal is completed, step b is entered; otherwise, the remaining
highest harmonic number for model training is selected; Whether all the highest power
index of solar activity parameters are traversed is checked. If the traversal is completed,
step c is entered; otherwise, the remaining highest power index for model training is
selected. Whether the index of solar activity has been traversed is judged. If so, the next
step is entered; otherwise, the remaining solar activity indices for training are selected.

(6) The prediction model according to RRMSE is determined.
(7) A modeling test is undertaken. According to the division of seasons, the data

of January, April, July, and October 2016 are respectively used for testing and compared
with the IRI-2016 model. If the model performance is worse than the IRI model, the data
characteristics need to be re-analyzed to determine the model set; if the model performance
is better than the IRI model, it can be used for engineering prediction.

2.2. Data

Following the modeling technique route and flow identified in the previous section,
this section specifies the data required for hmF2 parameter modeling.

2.2.1. Ionospheric hmF2

hmF2 data from the Moscow station (55.9◦N, 37.7◦E) are selected to train and learn
the proposed model and parameters, which can be obtained from http://www.wdcb.ru
(accessed on 1 January 2023) and were measured by an instrument known as the ionosonde.
The collected data were averaged by month and hour to obtain the corresponding median
value, which is the target variable modeled in this paper and referred to as hmF2 monthly
median value data. Figure 2 shows the hmF2 monthly value data of the collected station,
which was completed from August 2011 to October 2016 and used in this study to train
and validate the proposed model.

Figure 2. hmF2 monthly median data from the Moscow station.

2.2.2. Solar Activity Index

People usually use the solar activity index to represent the intensity of solar activity.
The most commonly used solar activity index includes: (1) F10.7 [25], the solar radio wave
flux with a wavelength of 10.7 cm affected by the upper atmosphere and chromospheric
corona [26], denoted simply as F; (2) R [27], the number of sunspots affected by the lower
chromosphere and the photosphere; (3) Lyman-α [28], the strongest single line in the
ultraviolet band, abbreviated as A. The three solar activity indices are available from the
corresponding forecast websites.

(1) The outer chromosphere and part of the inner corona of the sun’s atmosphere emit
F10.7. Flux (sfu) is the unit of F10.7, 1 sfu =10−22 Wm−2Hz−1 [29]. As a common index
of solar activity, F10.7 is closely related to the intensity of solar activity [30]. It is mainly
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determined by sunspot number groups on the solar surface and can describe the intensity
of solar activity [31]. It is widely used in ionospheric parameter prediction models. For
example, F10.7 is used as the input parameter of the model to fit the ionospheric parameter
hmF2 [13,14]. The twelve-monthly smoothed value of F10.7 is used here, denoted as F12.

(2) The sunspot number is a swirling airflow caused by the solid solar magnetic field
activity located in the solar sphere [32]. The sunspot number is often used to measure
the level of solar activity. Changes in the ionosphere are subject to solar activity, and so
the sunspot number is used to describe changes in ionospheric parameters and to study
prediction models of ionospheric parameters [31]. Li et al. introduced sunspot numbers
into the model when predicting ionospheric hmF2 [19]. The twelve-monthly smoothed
value of R is used here, denoted as R12.

(3) The Lyman-α line is the hydrogen line in the Lyman series and represents the
most vital single line in the outer band. Electron transitions produce it within hydrogen
atoms when atomic electrons transition from the first excited state to the ground state.
Lyman-α is released by hydrogen produced in large quantities in the universe [33] and also
participate in the modeling of ionospheric parameters as an input parameter [34]. Here, the
twelve-monthly smoothed value of Lyman-α is used, denoted as A12.

The twelve-monthly smoothed value is calculated by the following formula:

S12 =
1
12

[
∑

n+5
i=n−5 Si +

1
2
(Sn−6 + Sn+6)

]
(1)

where S represents the index of solar activity, S represents the solar activity index’s monthly
mean value, and n represents the month.

Figure 3 shows the changes in F12, R12, and A12 over time. The three solar activity
indices tend to be the same year by year, but the details are still different.

Figure 3. Trend of solar activity index over time.

3. Results

3.1. Model Determination

There is a correlation between ionospheric parameters and the solar activity index,
and there are annual, semi-annual, seasonal, and more subtle variations [23] Therefore,
for the given local time and geographical coordinates, the Formula (2) shows the general
formula for defining the harmonic mapping between the solar cycle variation parameters,
year, season, and month, and hmF2:

hmF2(p, m) = ∑
K

k=0 ∑
J

j=0

[
γk,j p

j · cos(2πkm/12) + βk,j p
j · sin(2πkm/12)

]
(2)

where p represents F12, R12, A12 and m represents the integer of the month. The harmonic
number k describes the variation characteristics of annual, semi-annual, seasonal, and
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monthly cycles. k = 1, 2, 3, and 4, respectively, represent one year, half a year, a quarter,
and one month. Considering that the increase in the K value does not bring a significant
increase in calculation accuracy [35], K = 1 and 2 are chosen here. The value of j is directly
related to the solar activity index. J = 1 and 2 are selected here. Given the solar activity
index and the values of K and J, the hyperparameters in the model can be statistically
obtained by regression analysis under the least square method. The final determination of
the model requires the consideration of RRMSE. The specific solving process is as follows:

(
CCT

)

⎡
⎢⎢⎢⎢⎢⎣

γ0,0
γ0,1

...
βK,J−1

βK,J

⎤
⎥⎥⎥⎥⎥⎦
= C

⎡
⎢⎢⎢⎢⎢⎣

hmF21
hmF22

...
hmF2O−1

hmF2O

⎤
⎥⎥⎥⎥⎥⎦

(3)

where O is the number of hmF2 obtained statistically, and

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
(p)1 (p)2 · · · (p)O

...
...

. . .
...

(p)J−1
1 sin

(
2πKm

12

)
(p)J−1

2 sin
(

2πKm
12

)
. . . (p)J−1

O sin
(

2πKm
12

)

(p)J
1 sin

(
2πKm

12

)
(p)J

2 sin
(

2πKm
12

)
· · · (p)J

O sin
(

2πKm
12

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

In the given model set, the data from August 2011 to December 2015 are used for
training to obtain the hyperparameters in the model. Then, the data from February, March,
May, June, August, and September 2016 are used to verify the trained model. The RRMSE
between the verified and observations is calculated, and RRMSE is taken as the evaluation
strategy of the model. Formula (5) is the calculation formula of RRMSE:

RRMSE =

√√√√ 1
N

N

∑
i=1

(
hmF2′i − hmF2i

hmF2i
)

2

(5)

where hmF2′i is the calculated value of the model, hmF2i is the measured statistical value,
and N is the total data count.

We calculated the RRMSE value obtained by verification calculation of all training
models in the model set. The result shows that: (1) the increase of orders J and K does not
improve the model’s predictive performance, but improve the calculation of the algorithm;
(2) RRMSE is minimum when R is selected as the index of solar activity to participate
in the modeling. The minimum RMSE of using F, R, and A is 4.52%, 4.27%, and 4.67%
with J = 1 and K = 1. This is different from the model of ionospheric foF2 [1] and other
parameters [35].

3.2. Results Analysis

Based on the training results, the values of p, J, and K were selected as R, 1, and 1,
respectively, and then plugged into Equation (2). This led to the derivation of the prediction
model for hmF2 at the Moscow station, which is represented by Equation (6):

ĥmF2(R, m) =
1
∑

k=0

1
∑

j=0

[
γ

k,j R
j · cos

(
2πkm

12

)
+ β

k,j R
j · sin

(
2πkm

12

)]

=
(
γ0,0 + γ0,1 R

)
+
(
γ1,0 + γ1,1 R

)
· cos

( 2πm
12
)
+
(

β1,0 + β1,1 R
)
· sin

( 2πm
12
)

= γ0,0 + γ1,0 · cos
( 2πm

12
)
+ β1,0 · sin

( 2πm
12
)
+
(
γ0,1 + γ1,1 · cos

( 2πm
12
)
+ β1,1 · sin

( 2πm
12
))

· R

, (6)
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The exact value of the hyperparameter in the model can be obtained by substituting
the training data into Equation (6) and using the least square method to fit it. The result
is shown in Figure 4, where the rows represent the world from UT = 0 to UT = 23, the
columns represent the names of the hyperparameters, and the colors represent the values
of the hyperparameters.

Figure 4. Prediction model hyperparameter distribution diagram.

As can be seen from Figure 4, the change of the hyperparameter changes obviously
with time, and the γ0,0 is the maximum. With the increase in the order, the value contribu-
tion of the hyperparameter decreases.

Based on the above conditions, it is only necessary to provide the sunspot number,
month, and universal time corresponding to the time in the model to obtain the predicted
value of hmF2. In Figure 5, we present the RRMSE between the observations and the
predicted values obtained by using the verification dataset, where OBS is the observed
value and VAL is the model validation value.

Figure 5. Figure comparing observed and verified values: (a) February; (b) March; (c) May; (d) June;
(e) August; (f) September.
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As shown in Figure 5, the model’s predicted ability varies for different months. The
RRMSE is less than 3% for February and May, while the predicted ability is relatively poor
for July and August, with RRMSE greater than 5%. Furthermore, the predicted values are
generally higher than the observations.

4. Discussions

To test the generalization ability of the model, we compared the proposed model
(denoted as PRO) with the IRI model [36]. The test data used are hmF2 of January (winter),
April (spring), July (summer), and October (autumn) of 2016.

Figure 6 compares the observations, predicted values of the IRI model and PRO model.

Figure 6. Comparison observations, and predictions of the IRI and PRO models: (a) January, Winter;
(b) April, Spring; (c) July, Summer; (d) October, Autumn.

Overall, the hmF2 exhibit a trend of being low during the day and high at night. In
January and October, the hmF2 values are relatively stable, while, in April and July, they
fluctuate to some extent at UT = 7 and UT = 15, respectively. The predicted values of the IRI
and PRO models for January and October are relatively close to the observations, but the
IRI model tends to overestimate the hmF2 values. However, the IRI and PRO models show
significant prediction errors compared with the observations in April and July. Specifically,
the predicted values of the IRI model are lower than the observations around UT = 6, while
the PRO model’s predictions are higher than the observations.

To further evaluate the model’s predicted ability and accuracy, RRMSE (Equation (7))
and RRMSE (Equation (4)) is calculated to intuitively analyze the difference between hmF2
predicted by the IRI model and the PRO model and the observed value.

Formula (7) is the calculation formula of RMSE:

RMSE =

√√√√ 1
N

N

∑
i=1

(hmF2′i − hmF2i)
2 (7)

where hmF2′i is the calculated value of the model, hmF2i is the measured statistical value,
and N is the total data count.

Figure 7 shows the RMSE and RRMSE results of the IRI and PRO models. To conduct
a more refined analysis of the results, we also calculated the error of the prediction results
in different months. The results are shown as follows:
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Figure 7. RMSE and RRMSE obtained by the IRI model and PRO model: (a) RMSE of the model;
(b) RMSE calculated by month; (c) RRMSE of the model; (d) RRMSE calculated by month.

(1) For all the predictions, the RMSE of the IRI model is 17.02 km, and that of the PRO
model is 11.82 km. Compared with the IRI model, the RMSE of the PRO model is 5.20 km
smaller, proving that the PRO model’s stability is better than that of the IRI model.

(2) Specific to each month, the RMSE of the PRO model is smaller than that of the IRI
model. In January and October, the RMSE of the PRO model was much smaller than that
of the IRI model. In April, the RMSE of the PRO model was only slightly lower than that
of the IRI model. Compared with other months, the RMSE of both models was relatively
large in July.

(3) The total RRMSE of the IRI model is 6.01%, and that of the PRO model is 4.23%.
Compared with the IRI model, the RRMSE of the PRO model is 1.78% smaller, proving that
the PRO model’s prediction accuracy is better than that of the IRI model.

(4) In each month, except April, the RRMSE of the PRO model is smaller than that
of the IRI model in other months. In January and October, the RRMSE of the PRO model
decreased most significantly compared with the IRI model. Compared with other months,
the RRMSE of both models was relatively large in July.

Generally speaking, the PRO model is superior to the IRI model in both stability
and accuracy of hmF2 prediction at the Moscow station. In other words, the PRO model
improves the predicted accuracy at the Moscow station. The following are our reflections
on the results and prospects for the future:

(1) During January and October, the hmF2 of observation showed relatively stable
changes, and the PRO model demonstrated a noticeably better predicted ability for the
hmF2 data than the IRI model. However, in April and July, the hmF2 exhibited significant
fluctuations, causing a decrease in the predicted ability of both models. This suggests that
there is room for improvement room in both models to learn the finer details;

(2) The PRO model utilized J = 1 and K = 1 as its model parameters, which differs
from other research findings. This phenomenon could be attributed to the size of the
collected data, which warrants further exploration. This choice could also result in a
weaker generalization ability of the model towards hmF2 details, which also requires
further investigation;
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(3) Due to data collection limitations, the model could only verify hmF2 data collected
from the Moscow station. Future efforts will aim to verify hmF2 data from stations in
different latitude regions;

(4) In the future, his model can also be compared with other models such as ANN
and LSTM.

5. Conclusions

Based on the SML method, this paper proposed an interpretable long-term prediction
model for the ionospheric hmF2 median value of the Moscow station. The model only
needs to input the sunspot number, month, and universal time to predict the monthly
median value data of hmF2 in the corresponding month. In general, compared with the
IRI model, the RMSE of the PRO model decreased by 5.20 km and the RRMSE of the
PRO model decreased by 1.78%, indicating that the PRO model has certain advantages in
predicting hmF2 parameters at this station. Specifically, when predicting hmF2 in January,
July, and October, the PRO model has a higher precision prediction. When predicting hmF2
in April, the PRO model has a better predicted degree but lower prediction accuracy than
the IRI model. In the future, the applicability of this model needs to be further discussed on
other stations in different latitude ranges or other ionospheric parameters. In addition, this
model can be compared with other methods such as ANN and LSTM models in the future.
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Abstract: To improve the accuracy and reliability of precipitation estimation, numerous models based
on machine learning technology have been developed for integrating data from multiple sources.
However, little attention has been paid to extracting the spatiotemporal correlation patterns between
satellite products and rain gauge observations during the merging process. This paper focuses on
this issue by proposing an integrated framework to generate an accurate and reliable spatiotemporal
estimation of precipitation. The proposed framework integrates Funk-Singular Value Decomposition
(F-SVD) in the recommender system to achieve the accurate spatial distribution of precipitation
based on the spatiotemporal interpolation of rain gauge observations and Convolutional Long
Short-Term Memory (ConvLSTM) to merge precipitation data from interpolation results and satellite
observation through exploiting the spatiotemporal correlation pattern between them. The framework
(FS-ConvLSTM) is utilized to obtain hourly precipitation merging data with a resolution of 0.1◦ in
Jianxi Basin, southeast of China, from both rain gauge data and Global Precipitation Measurement
(GPM) from 2006 to 2018. The LSTM and Inverse Distance Weighting (IDW) are constructed for
comparison purposes. The results demonstrate that the framework could not only provide more
accurate precipitation distribution but also achieve better stability and reliability. Compared with
other models, it performs better in variation process description and rainfall capture capability,
and the root mean square error (RSME) and probability of detection (POD) are improved by 63.6%
and 22.9% from the original GPM, respectively. In addition, the merged precipitation combines
the strength of different data while mitigating their weaknesses and has good agreement with
observed precipitation in terms of magnitude and spatial distribution. Consequently, the proposed
framework provides a valuable tool to improve the accuracy of precipitation estimation, which can
have important implications for water resource management and natural disaster preparedness.

Keywords: spatiotemporal fusion; machine learning; multi-source precipitation; ConvLSTM; F-SVD

1. Introduction

Precipitation is a critical meteorological variable with significant implications for many
applications, including flood forecasting [1], agriculture [2], water resource management [3],
and climate change studies [4]. Due to its large spatiotemporal variability, the accurate
estimation of precipitation remains challenging, especially in areas with complex terrains
and limited observational networks [5,6].

Traditional approaches to precipitation estimation rely on observations from rain
gauges. These are simple devices that collect and measure the amount of precipitation.
The observation data are usually considered reliable and accurate but have limited spatial
coverage and are prone to errors due to gauge under-catch and exposure issues [7]. To
overcome these limitations, many alternative approaches have been developed to estimate
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precipitation, including remote sensing technologies such as radar and satellite [8]. Radar
waves provide information on precipitation location, intensity, and distribution with a high
temporal and spatial resolution. In contrast, satellite observations provide a large-scale
view of precipitation with a relatively high spatial resolution but lower temporal resolution
than radar waves [9]. Both offer improved spatial and temporal coverage, but the data
may not be as accurate as that obtained from rain gauges. Therefore, combining data from
multiple sources, also known as multi-source precipitation fusion, has become a promising
way to overcome these limitations and provide more accurate estimates of precipitation.

In recent years, numerous statistical methods have been introduced for integrating pre-
cipitation data from rain gauges and satellites, including bias correction [10], Kriging-based
methods [11], linear regression model [12], geographical difference analysis method [13],
Bayesian combination method [14], Kalman filter calibration method [15], and geograph-
ically weighted regression method [16]. Duan et al. [17] merged the precipitation data
observed at ground stations with the TRMM 3B42 satellite precipitation data by separately
employing linear regression, geographically weighted regression, Kalman filer fusion, and
the optimal interpolation method. The comparison results show that linear regression
shows the best merging effect across the daily scale, while at the monthly scale, the precip-
itation data processed using the Kalman filter presented the highest accuracy. However,
the aforementioned methodologies rely heavily on mathematical equations and strong
assumptions, which can result in various limitations. Given the rapid advancement of
machine learning (ML) technology, it possesses the potential to surmount certain limitations
intrinsic to the aforementioned methods [18]. Unlike traditional approaches, ML exhibits
more robust learning and generalization abilities, allowing it to effectively manage complex
nonlinear relationships without requiring explicit statistical models. Additionally, ML
demonstrates superior efficiency in processing vast amounts of data, thus enhancing its
computational performance. Zhang et al. [19] used five ML algorithms (extreme gradient
boosting, gradient boosting decision tree, random forest, LightGBM, and multiple linear
regression) together with auxiliary geographic parameters to merge hourly data from mete-
orological stations, Radar, and satellites. The results show that the random forest-based
hourly precipitation merging model is suitable for analyzing monsoon rainstorm events,
while the extreme gradient boosting-based hourly precipitation merging model is suitable
for analyzing typhoon events. Zhang et al. [20] applied four ML approaches, including
a support vector machine, a random forest algorithm, an artificial neural network, and
extreme gradient boosting, to construct the estimation models in which cloud properties
are taken as additional predictors to improve the early run of the Integrated Multi-satellite
Retrievals for GPM (IMERG).

Despite the progress in the development of multi-source precipitation merging models
based on ML, most studies have primarily focused on describing the relationship be-tween
the precipitation data and complex environment variables, while the spatiotemporal cor-
relation patterns between satellite products and rain gauge observations have received
relatively limited attention. The long short-term memory network (LSTM) is a type of
recurrent neural network (RNN) specifically designed to handle long-term dependencies by
utilizing a gating mechanism to regulate the flow of information. Shen et al. [21] proposed
an integrated framework to merge multi-satellite and gauge precipitation data, which
integrates the geographically weighted regression to improve the spatial resolution of
precipitation estimations and the LSTM to improve the precipitation estimation accuracy
by exploiting the temporal correlation pattern between multi-satellite precipitation prod-
ucts and rain gauges. Wu et al. [22] proposed a spatiotemporal deep fusion model by
combining the convolutional neural networks (CNN) and the LSTM to merge the TRMM
3B42 V7 satellite data, rain gauge data, and thermal infrared images. The CNN was used
to extract spatial features from the radar and satellite data, while the LSTM was used
to capture the temporal features of the precipitation data. The superiority of LSTM in
merging precipitation data has been verified. On the other hand, Convolutional LSTM
(ConvLSTM) is an extension of LSTM that incorporates convolutional layers into its net-
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work architecture, which allows it to perform spatiotemporal modeling of sequential data
and capture spatiotemporal correlations more effectively due to its inherent convolutional
structure. It has been successfully applied to precipitation nowcasting and verified to
consistently outperform the fully connected LSTM [23]. To the best of our knowledge,
there are no related studies merging satellite and gauge precipitation using a ConvLSTM
network by formulating multi-source precipitation merging as a spatiotemporal sequence
processing problem.

The purpose of our study is to address the challenge of spatiotemporally merging
precipitation data from satellite and rain gauges by introducing an integrated framework.
This framework aims to effectively combine spatiotemporal information from different data
sources to enhance the accuracy and reliability of precipitation estimation. It integrates F-
SVD in the recommender system to achieve the accurate spatial distribution of precipitation
based on the spatiotemporal interpolation of rain gauge observations and ConvLSTM
by exploiting the spatiotemporal correlation pattern between them. The framework (FS-
ConvLSTM) is applied to the Jianxi Basin of China to generate hourly precipitation estimates
with a resolution of 0.1◦ from the data of both rain gauges and GPM (IMERG V06) from
2006 to 2018.

2. Study Area and Materials

2.1. Study Area

The study area is located in the Jianxi basin in southeast China, between 117◦31′–119◦00′

east longitude and 26◦31′–28◦31′ north latitude (Figure 1). This basin is the largest tributary
in the upper reaches of the Minjiang River, with its mainstream originating in Wuyishan
and spanning 635.6 km. The entire drainage area of the Jianxi River basin covers 14,787 km2,
accounting for 27% of the total area of the Minjiang River basin. The basin is situated in
a subtropical monsoon climate zone, characterized by humid air and abundant rainfall,
with annual average rainfall ranging between 1800 and 2200 mm. Most rainfall occurs
during the plum rain season from April to June and the typhoon rain season from July
to September.

Figure 1. Location of the study area and spatial distribution of rain gauges.

2.2. Data

The network of rainfall gauges in the study area is characterized by its dense and
evenly distributed nature, ensuring reliable data quality and high accuracy of the observa-
tions. The observation data used in this study were obtained from gauges operated by the
Fujian Provincial Bureau of Hydrology, which are not classified as international exchange
stations. The spatial distribution of meteorological stations can be seen in Figure 1, with a
total of 15 rain gauges in the entire basin. Hourly data from 425 rainfall events from 2006 to
2018 were selected as the research data. The training period was from 2006 to 2014, and the
testing period was from 2015 to 2018. The dataset was prepared through sliding windows,
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resulting in a training set with a sample size of 272,916 and a test set with a sample size
of 109,858.

To evaluate the accuracy improvement of the fusion model for different magnitudes
of rainfall data, the maximum 12 h cumulative rainfall was calculated based on the selected
425 rainfall events. Rainfall was classified into four categories: light, moderate, heavy, and
torrential, based on their magnitude as per the classification criteria listed in Table 1.

Table 1. Rainfall type classification criteria and results.

Type Light Moderate Heavy Torrential

Maximum 12 h rainfall (mm) <5 5~15 15~30 >30
Number of events 6 157 160 102

Number of events in the training stage 4 102 112 79
Number of events in the testing stage 2 52 48 23

The satellite precipitation data were obtained from the Integrated Multi-Satellite
Retrievals for Global Precipitation Measurement Mission (IMERG). Global Precipitation
Measurement (GPM) is an international satellite mission conducted by the National Aero-
nautics and Space Administration (NASA) and Japan Aerospace Exploration Agency
(JAXA), which uses multi-sensors, multi-satellites, and multi-algorithms combined with
satellite networks and rain gauge inversion to obtain more accurate precipitation data.
IMERG algorithm is designed to calibrate, combine, and interpolate satellite microwave
precipitation estimates from the TRMM and GPM, as well as microwave-calibrated infrared
satellite estimates, precipitation measurement analyses, and potentially other precipitation
estimates. It has now been updated to product version V06B. This study uses GPM (IMERG
V06) Final Run data with a spatial resolution of 0.1◦ and a temporal resolution of half an
hour from January 2006 to December 2018 (https://earthdata.nasa.gov/; accessed on 15
October 2022).

3. Methodology

This study proposes an integrated framework to spatiotemporally merge precipitation
data from rain gauge and GPM observations. Figure 2 presents the main structure of the
framework: the spatiotemporal interpolation method based on F-SVD (Figure 2a) and the
fusion model based on ConvLSTM (Figure 2b). The relevant methods are briefly described
as follows.

Figure 2. The integrated framework (FS-ConvLSTM) for the merging of precipitation data from rain
gauge and GPM observations. (a) Spatiotemporal interpolation method based on F-SVD; (b) Fusion
model based on ConvLSTM.
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3.1. F-SVD

The interpolation method adopted in this study is a spatiotemporal precipitation
method based on matrix decomposition (hereafter referred to as F-SVD) proposed by
Chen et al. [24], which has been proven to outperform the traditional interpolation methods
(inverse distance weight, ordinary kriging) through cross-validation and offer a better
spatial estimation. The calculation process is presented in Figure 2a and contains the
following steps:

(1) The historical precipitation information from m surrounding gauges and n past moments
needs to be prepared for the interpolation at the target point at a certain moment.

(2) The precipitation data from the surrounding gauges and the target point from adjacent
moments can form a spatiotemporal data matrix with dimensions of (m + 1) ×n, where
the rows represent time and columns represent space.

(3) If any precipitation values in the matrix representing the historical precipitation of the
target point are unknown, traditional interpolation methods such as IDW should be
used to calculate these values until only one null value representing the precipitation
to be estimated remains.

(4) The F-SVD method is utilized to decompose the matrix into a temporal feature matrix
X and a spatial feature matrix Y. The stochastic gradient descent algorithm is used
for optimization.

(5) Then, the two optimal feature matrices are multiplied to reconstruct a matrix P, the
element at the m + 1 row and n column in the reconstructed matrix represents the
estimated precipitation, which is calculated as follows:

Pi,j =
q

∑
q=1

Xi,qYq,j (1)

where q is the number of latent features.

3.2. ConvLSTM

ConvLSTM is an extension of LSTM, which uses convolutional layers to process
spatiotemporal data [23]. It applies convolutions on the input data before passing it through
the LSTM cells, allowing it to capture spatial and temporal dependencies within the input
sequence [25]. As shown in Figure 3, the structure of ConvLSTM is similar to LSTM
that contains forget gate (ft), input gate (it), and output gate (Ot), but with convolutional
layers instead of fully connected layers, which enables ConvLSTM to capture underlying
spatial features [26]. The transmission relationship between the gates is expressed using
the following equation:

it = σ(Wxi ∗ χt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (2)

ft = σ
(

Wx f ∗ χt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
(3)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ χt + Whc ∗ Ht−1 + bc) (4)

ot = σ(Wxo ∗ χt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (5)

Ht = ot ◦ tanh(Ct) (6)

where ◦ denotes the Hadamard product; ∗ denotes the convolution operator; σ is the
sigmoid activation function, which is given by:

σ(x) =
1

1 + e−x
(7)
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Figure 3. Structure of ConvLSTM cell.

3.3. The Spatiotemporal Fusion Model

The model diagram of the spatiotemporal fusion of precipitation data using ConvL-
STM based on GPM satellite observation data and ground-based spatiotemporal interpola-
tion data calculated by the F-SVD method is shown in Figure 2b.

At a point s in space, nine surrounding grid points, including itself, are selected to
form the GPM satellite-observed precipitation matrix Gt and the ground spatiotemporal
interpolated precipitation matrix It at time t. These matrices are defined as follows:

Gt =

⎡
⎣

gs−4,t gs−3,t gs−2,t
gs−1,t gs,t gs+1,t
gs+2,t gs+3,t gs+4,t

⎤
⎦

It =

⎡
⎣

is−4,t is−3,t is−2,t
is−1,t is,t is+1,t
is+2,t is+3,t is+4,t

⎤
⎦

(8)

where gs,t and is,t are the GPM satellite observation data and ground-based spatiotemporal
interpolation data at time t, point s, respectively.

For the spatiotemporal precipitation fusion method, the GPM satellite observed pre-
cipitation matrix and the ground spatiotemporal interpolated precipitation matrix for the
past six time periods need to be inputted into the constructed ConvLSTM to obtain the
spatiotemporal fused precipitation ps,t at point s on space at time t in the following form:

ps,t = fconvlstm

[(
Gt−5, Gt−4, . . . , Gt

)
,
(

It−5, It−4, . . . , It
)]

(9)

The structure of the ConvLSTM network model constructed for spatiotemporal pre-
cipitation fusion is presented in Figure 4. The figure illustrates the precipitation fusion
process from input to output at a specific time point, with rectangles representing different
neural network levels and rounded rectangles indicating the format of input, output, and
intermediate variables. The input data have a tensor of size 6 × 3 × 3 × 2, where the
dimensions represent time, row, column, and the number of channels, respectively. This
tensor stores the data of GPM and ground-based spatiotemporal interpolation. The output
data have a three-dimensional tensor of size 1 × 1 × 1, with dimensions of time, rows, and
columns, respectively, which holds the fused precipitation.
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Figure 4. Structure of the three-layer ConvLSTM.

With the rain gauge as the central point, the nine surrounding grid points were
selected. The input data for the ConvLSTM model comprised the GPM data and ground
spatiotemporal interpolation data (F-SVD) of the past six moments, while the output was
the precipitation observed at the station. The hourly precipitation data from 2006 to 2014
were used as the training set, and the hourly precipitation data from 2014 to 2018 were
used as the testing set to evaluate the model’s accuracy.

The main steps of the multi-source precipitation spatiotemporal fusion algorithm
(FS-ConvLSTM) are as follows:

(1) Download GPM satellite observation data with a spatial resolution of 0.1◦ and a
temporal resolution of 0.5 h. Process the data to obtain precipitation data with a time
interval of 1 h.

(2) Collect and organize the rain gauge observation data of the study watershed and
interpolate them into 0.1◦ × 0.1◦ spatial grid point data using the F-SVD method.

(3) Construct input sample sets based on GPM and interpolation results of F-SVD, nor-
malize the data, and use the data from 2006 to 2014 as the training set and the data
from 2014 to 2018 as the testing set.

(4) Train the model at 15 rain gauges with precipitation observations as the true value
and mean squared error as the loss function to minimize the training loss.

(5) Apply the trained model to each grid point within the study watershed for precipita-
tion fusion.

3.4. Evaluation Indicators

The quality of precipitation data is evaluated using two types of indices: quantitative
and categorical. The quantitative evaluation index assesses factors such as rainfall magni-
tude and temporal distribution. It employs several measures, including relative deviation
(BIAS), root mean square error (RSME), correlation coefficient (CC), and rainfall ratio (RA-
TIO). Meanwhile, the categorical evaluation index focuses on the spatial distribution of
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precipitation and uses probability of detection (POD), false alarm rate (FAR), threat score
(TS), and missed alarm rate (MAR).

BIAS =

n

∑
i=1

SATi −
n

∑
i=1

OBSi

n

∑
i=1

OBSi

(10)

RSME =

√
1
n

n

∑
i=1

(SATi − OBSi)
2 (11)

CC =

n

∑
i=1

(
SATi − SAT

)(
OBSi − OBS

)

√
n

∑
i=1

(
SATi − SAT

)2(
OBSi − OBS

)2
(12)

RATIO =

n

∑
i=1

SATi

n

∑
i=1

OBSi

(13)

POD =
TP

TP + FN
(14)

FAR =
FP

TP + FP
(15)

TS =
TP

TP + FN + FP
(16)

MAR =
FN

FN + TP
(17)

where n denotes the number of observation data; SAT and OBS refer to GPM observation
and rain gauge observation, respectively; TP represents the number of accurately forecasted
precipitation data; FN is the number of missed reports; and FP denotes the number of false
reports. These variables are presented in Table 2. Specifically, TP indicates the number of
precipitation data observed by both the satellite and the rain gauge, whereas FP refers to
the number of precipitation data observed by the satellite but not by the rain gauge. On the
other hand, FN represents the number of rainfall data observed by the rain gauge but not
by the satellite.

Table 2. Description of TP, FP, FN, and TN.

Rain Gauge Observation
Satellite Product

Yes No

Yes TP FN
No FP TN

4. Results

The study proposes an integrated framework (FS-ConvLSTM) and applies it to gener-
ate hourly spatial precipitation estimation through spatiotemporally merging data from
rain gauge and GPM (IMERG V06) observations in the Jainxi basin of China from 2006 to
2018. The relevant results and findings are displayed in the following sub-sections: quality
assessment on GPM (Section 4.1), accuracy evaluation of different models (Section 4.2), and
model performance in typical rainfall events (Section 4.3).
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4.1. Quality Assessment of GPM

The satellite rainfall observation dataset for the Jianxi watershed is constructed by
collating GPM data at a 0.1◦ scale and 0.5 h interval from 2006 to 2018 into a precipitation
dataset with a 1 h time scale. Based on this dataset, the eight evaluation indicators are
applied to assess GPM at the grid points of the 15 rainfall stations, and the results are
presented in Figure 5.

Figure 5. Evaluation of GPM with reference to rain gauge observations.

According to the quantitative evaluation results, on the whole, GPM overestimates
rainfall events by approximately twice as much as the ground observations. The BIAS
between GPM and gauge observation is greater than 1, and the RATIO is between 2 and 3.
The RSME value does not vary significantly among gauges—mostly between 2 and 2.2 mm.
In contrast, the CC varies widely among different gauges, with values ranging from 0.1 to
0.45. Qilijie station has the lowest CC value of 0.117, while Cao Dun station has the highest
CC value of 0.422.

Regarding the categorical evaluation index results, the POD of GPM varies from 0.55 to
0.73 at each rainfall gauge, with an average value of 0.661. This indicates that approximately
66% of actual rainfall events can be captured and reflected by GPM. The FAR of GPM is
around 0.7, which means that about 70% of the rainfall events observed by GPM are false
alarms, i.e., no actual rainfall occurs. The MAR of GPM varies between 0.25 and 0.45 at
each station, suggesting that approximately 30% of actual rainfall events correspond to
GPM data of 0. It is important to note that individual classification index evaluation can be
one-sided, and high POD may coincide with high FAR. TS integrates the evaluation of GPM
on both hit and missed rainfall events, with an average value of 0.247 across all stations.

Overall, GPM data can partially reflect the actual rainfall patterns. However, there is an
overall tendency to overestimate rainfall events, as well as omissions and the misreporting
of some events, which indicates that the GPM data lacks stability.

4.2. Accuracy Evaluation of Different Models

4.2.1. Accuracy Evaluation at Rain Gauges

The accuracy evaluations of different precipitation data at the location of rain gauges
during the training and testing stages are presented in Table 3. As can be seen from the
table, for the training stage, FS-ConvLSTM exhibits superiority over other models in most
indicators, except for two evaluation indicators related to total rainfall, including BIAS and
RATIO, where F-SVD demonstrates better accuracy. For the testing stage, the advantage
of FS-ConvLSTM is maintained, but LSTM shows better accuracy in BIAS and RATIO.
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The evaluation results of different precipitation data show consistent performance in the
training and testing stages.

Table 3. Performance of the FS-ConvLSTM fusion model in the training and testing stages.

Period Data BIAS RSME CC RATIO POD FAR TS MAR

Training
stage

GPM 1.029 3.874 0.295 2.029 0.524 0.496 0.346 0.476
IDW −0.036 1.998 0.489 0.964 0.552 0.326 0.436 0.448

F-SVD −0.027 1.481 0.753 0.973 0.634 0.186 0.554 0.366
LSTM −0.049 2.070 0.393 0.951 0.507 0.455 0.356 0.493

FS-ConvLSTM 0.208 1.410 0.782 1.208 0.644 0.183 0.563 0.356

Testing
stage

GPM 1.088 3.656 0.290 2.088 0.519 0.533 0.326 0.481
IDW −0.022 1.957 0.437 0.978 0.508 0.370 0.391 0.492

F-SVD −0.024 1.487 0.714 0.976 0.602 0.221 0.514 0.398
LSTM 0.020 2.007 0.330 1.020 0.482 0.499 0.326 0.518

FS-ConvLSTM 0.256 1.404 0.754 1.256 0.612 0.219 0.522 0.388

For the evaluation results of the quantitative indicators, the GPM data show an
apparent overestimation. The ground-interpolated data slightly underestimate the rainfall,
and the accuracy of F-SVD is better than that of IDW in each indicator value since the
interpolation accounts for both spatial relationships and the trend of temporal changes.
LSTM has lower BIAS, and RATIO is closer to 1, while FS-ConvLSTM has lower RSME
and higher CC. Through fusing the data from rain gauges, the bias of GPM is improved,
and the variation process fits better with the measured values. Compared with GPM,
FS-ConvLSTM and LSTM reduce by 63.6% and 46.6% in RSME and improve by 165% and
33.2% in CC, respectively. Regarding the evaluation results of the categorical indicators,
F-SVD shows obvious advantages over IDW, with higher POD and TS and lower FAR
and MAR. The performance of LSTM is similar to that of GPM, while FS-ConvLSTM
shows a great improvement in each indicator compared to GPM and LSTM. FS-ConvLSTM
has the most accurate description of rainfall events, capturing and reflecting more than
60% of the rainfall events while reducing the cases of rainfall misreporting and omission.
Compared with GPM, FS-ConvLSTM improves by 22.9% and 62.7% in POD and TS and
is reduced by 63.1% and 25.2% in FAR and MAR. In summary, FS-ConvLSTM performs
optimally in the description of rainfall variation process and event capture capability via the
fusion of variation characteristics in the time and space of GPM and ground-interpolated
rainfall data.

To compare the accuracy of rainfall data at different magnitudes more precisely, an
accuracy evaluation was performed separately for light, medium, heavy, and torrential
rainfall events during the testing stage, and the results are shown in Table 4. In light rainfall
events, F-SVD performs best in the evaluation results of quantitative indicators, showing
obvious advantages in BIAS, RSME, and RATIO. GPM performs best in the classification
evaluation indicators, with the highest POD and TS and the lowest MAR. However, there is
an apparent overestimation of rainfall in GPM, with values close to 3.8 times the measured
values. In addition, FS-ConvLSTM has the highest CC and the lowest FAR among the
models, which also indicates superiority. For the medium, heavy, and torrential rainfall
events, FS-ConvLSTM has the lowest RSME, FAR, MAR, and the highest CC, POD, and TS,
demonstrating that the spatiotemporal fusion data are closest to the variation process of
the measured rainfall series and capture the rainfall events most accurately. Meanwhile,
the ground-interpolated data performed best on BIAS and RATIO and are closest to the
actual in terms of total rainfall.
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Table 4. Evaluation results of the precipitation data in different types of rainfall events.

Type Data BIAS RSME CC RATIO POD FAR TS MAR

Small rain

GPM 2.829 1.461 0.251 3.829 0.423 0.704 0.211 0.577
IDW −0.053 0.378 0.483 0.947 0.088 0.226 0.085 0.912

F-SVD −0.016 0.278 0.751 0.984 0.215 0.078 0.210 0.785
LSTM 1.509 0.651 0.207 2.509 0.383 0.687 0.208 0.617

FS-ConvLSTM 0.764 0.333 0.753 1.764 0.157 0.044 0.156 0.843

Moderate
rain

GPM 0.970 2.317 0.151 1.970 0.381 0.629 0.232 0.619
IDW −0.020 1.469 0.247 0.980 0.332 0.470 0.256 0.668

F-SVD −0.011 1.102 0.649 0.989 0.463 0.277 0.394 0.537
LSTM 0.323 1.447 0.214 1.323 0.329 0.595 0.222 0.671

FS-ConvLSTM 0.463 1.018 0.724 1.463 0.464 0.262 0.398 0.536

Heavy
rain

GPM 1.176 3.641 0.273 2.176 0.557 0.515 0.350 0.443
IDW −0.021 1.949 0.409 0.979 0.544 0.350 0.420 0.456

F-SVD −0.023 1.535 0.674 0.977 0.618 0.212 0.530 0.382
LSTM 0.260 1.983 0.306 1.260 0.517 0.485 0.348 0.483

FS-ConvLSTM 0.263 1.456 0.718 1.263 0.634 0.208 0.543 0.366

Torrential
rain

GPM 1.063 4.903 0.314 2.063 0.594 0.475 0.386 0.406
IDW −0.024 2.477 0.485 0.976 0.623 0.334 0.475 0.377

F-SVD −0.027 1.846 0.748 0.973 0.708 0.209 0.602 0.292
LSTM −0.161 2.594 0.364 0.839 0.571 0.445 0.391 0.429

FS-ConvLSTM 0.153 1.753 0.778 1.153 0.722 0.197 0.608 0.278

As the rainfall magnitude becomes larger, LSTM and FS-ConvLSTM are closer to the
measured value in total rainfall; BIAS keeps decreasing, with RATIO becoming closer to 1.
Since there is a direct relationship between RSME and rainfall magnitude, the RSME of the
fused data also keeps increasing. The CC of FS-ConvLSTM fluctuates around 0.75, with
the highest value of 0.778 for torrential rainfall events, while the CC of LSTM fluctuates
between 0.2 and 0.4, becoming larger as the rainfall magnitude increases. In terms of
classification indicators, as the rainfall event changes from light to heavy, the POD and TS
of the fused data show an overall increasing trend, and the MAR and FAR also show an
overall decreasing trend, suggesting that the rainfall capture capability keeps improving,
and the FS-ConvLSTM performs better than the LSTM.

In general, FS-ConvLSTM exhibits advantages over other methods in rainfall events
of different magnitudes, and its accuracy improves with the increase in rainfall magnitude.

4.2.2. Uncertainty Analysis

The estimation uncertainty of 15 rain gauges in each event during the testing stage
was calculated, and box-line plots were generated to depict the distribution, as illustrated
in Figure 6.

Based on the evaluation results of the quantitative indicators, the BIAS and RATIO of
most precipitation data have a narrow error distribution interval, with a value around 1. In
the case of light rain, the deviation of GPM is relatively larger, and the uncertainty interval
wider compared to other data. The accuracy of the ground-interpolated data is slightly
higher than that of the fused data, but this advantage decreases with increasing rainfall
magnitude. FS-ConvLSTM has a smaller interval width than LSTM, which denotes higher
stability. Regarding RSME, GPM has the highest median error in different magnitudes of
rainfall, while F-SVD has a lower median value than IDW but with a larger interval width.
The same difference exists between FS-ConvLSTM and LSTM, with the gap increasing as
the magnitude of rainfall becomes larger. In terms of CC, the median values of GPM and
LSTM are lower, while the median value of FS-ConvLSTM is the highest. F-SVD has a
higher median value than IDW.
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Figure 6. Boxplot of the evaluation indicators for different rainfall events. (a) Small rain; (b) Moderate
rain; (c) Heavy rain; (d) Torrential rain.

Among the classification indicators, the values of POD and TS increase, and the values
of FAR and MAR decrease as the rainfall magnitude increases. In light rainfall events, POD,
FAR, and MAR exhibit large uncertainties. For ground-interpolated data, F-SVD has a
better median and interval width of indicators than IDW. For the fused data, the median
indicator of FS-ConvLSTM is generally better than LSTM, except in the light rainfall events
where the median values of POD, TS, and MAR are worse for FS-ConvLSTM. As the rainfall
magnitude changes from moderate to heavy rainfall, the difference between FS-ConvLSTM
and LSTM in POD and TS increases while the difference in FAR decreases. FS-ConvLSTM
also has a shorter interval width, indicating higher stability.

Based on the above analysis, FS-ConvLSTM shows better median accuracy than GPM
and outperforms ground interpolation data and LSTM in most cases. The distribution
width of FS-ConvLSTM is narrower than that of F-SVD and, in most cases, is narrower than
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that of the GPM. Overall, FS-ConvLSTM improves both the accuracy and the stability of
the rainfall data.

4.3. Model Performance in Typical Rainfall Events

4.3.1. Comparison of Temporal Variation Processes

Four typical rainfall events were chosen during the testing stage, and the variation
patterns of rainfall observed by rain gauges, GPM, spatiotemporal interpolation by F-SVD,
and the spatiotemporal fused data by FS-ConvLSTM were compared. The results are
displayed in Figure 7.

Figure 7. Comparison of the temporal variation process at three selected rain gauges. (a) Small rain;
(b) Moderate rain; (c) Heavy rain; (d) Torrential rain.

From Figure 7a, it is evident that, for the light rainfall events, the rainfall intensities at
all moments are below 1 mm/h. All types of rainfall data accurately capture the rainfall
events, but there are differences in rainfall magnitudes. The GPM overestimates the rainfall
significantly at all three stations, and the data of F-SVD and FS-ConvLSTM are closer to the
actual measured values, with the fused data slightly higher than the ground observations.
Notably, at Pucheng station, the value of FS-ConvLSTM is larger than that of F-SVD at the
time of approaching the rain peak. Figure 7b shows that for the medium rainfall event, the
rainfall intensity is below 3 mm/h at all moments. All three types of data reflect the rainfall
event accurately, but GPM poorly describes the rain peak present time, and the rain peak at
Pucheng station is earlier than the actual measurement, while the rain peak at Dongyou
station is later than the actual measurement, showing considerably more uncertainty. At
most moments, GPM is higher than the actual measurement, and the data of F-SVD and
FS-ConvLSTM are slightly lower than the actual measurement. For the peak of rainfall, the
values of FS-ConvLSTM are closer to the measured values compared to F-SVD. Figure 7c
shows that, for heavy rainfall events, the maximum rainfall intensity is around 6 mm/h.
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At Pucheng and Wufu stations, GPM appears to underestimate the rainfall, and the rainfall
variation trend reflected at Pucheng station lags behind the measured data. Both the F-
SVD and FS-ConvLSTM data accurately reflect the magnitudes and trends of the rainfall,
but overall, FS-ConvLSTM performs better than F-SVD. Finally, Figure 7d illustrates that,
for torrential rainfall events, the maximum rainfall intensity is above 15 mm/h. GPM
underestimates the rainfall events, and the capture of rainfall trends at the Wufu station is
also biased. There is also a slight underestimation in F-SVD for the rain peaks, and the rain
peaks of FS-ConvLSTM are closer to the measured values than F-SVD.

After analyzing the four different magnitudes of rainfall events, it can be concluded
that GPM is less reliable in describing the rainfall magnitude. The data tend to overestimate
rainfall for light and moderate rainfall events while underestimating rainfall for heavy and
torrential rain. On the other hand, F-SVD provides a more accurate description of rainfall
magnitudes and rainfall trends, despite underestimating the rainfall peaks. FS-ConvLSTM
outperforms F-SVD in accurately reflecting the rainfall events, particularly in rainfall peaks,
which is more evident in heavy and torrential rainfall events.

4.3.2. Comparison of the Spatial Distribution

During the testing stage, two rainfall events of different magnitudes were selected,
and their cumulative rainfall spatial distributions were plotted. The resulting figures
(Figures 8 and 9) show the distribution of GPM, F-SVD, and FS-ConvLSTM from left
to right.

Figure 8. Spatial distribution of the accumulated precipitation for small and moderate rainfall events.
(a) Small rain; (b) Moderate rain.
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Figure 9. Spatial distribution of the accumulated precipitation for heavy and torrential rainfall events.
(a) Heavy rain; (b) Torrential rain.

As seen in Figure 8a, the rainfall epoch for light rainfall events is around 3 days. The
values of F-SVD and FS-ConvLSTM are closer, while the magnitude of the GPM data is
significantly larger. For spatial extreme values of accumulated rainfall, the minimal values
of FS-ConvLSTM and the minimal values of GPM are closer, and the maximal values of
FS-ConvLSTM are slightly larger than those of F-SVD. GPM and FS-ConvLSTM are more
continuous in spatial variation, while F-SVD has multiple isolated points in space that
can produce abrupt changes in rainfall amounts. The rainfall centers of GPM and F-SVD
are slightly different in space, and the rainfall centers of the two data and the rainfall
distribution of the surrounding points are reflected in the fusion data. Similar results are
found for the medium rainfall event, as seen in Figure 8b, where the duration of the medium
rainfall event is around two days. The magnitude of GPM estimation is higher than the
other two data, and the spatial extremes of F-SVD and FS-ConvLSTM are very close. The
spatial distributions of the three data are relatively similar, but the values for F-SVD are
more discrete in terms of spatial variation compared to the continuous spatial variation of
GPM and FS-ConvLSTM. The fused data combine the distribution characteristics of GPM
and F-SVD, with the spatial aggregation of rainfall of both reflected in the fusion.

For heavy rainfall events, as depicted in Figure 9a, the rainfall duration lasts for
approximately four days. GPM continues to overestimate the rainfall magnitude, while the
magnitudes of F-SVD and FS-ConvLSTM are closer and the spatial extremes are similar.
The spatial distribution of rainfall reflected by GPM and F-SVD are similar, and the location
of the rainfall center is also close, corresponding to a similar distribution in the fused data.
FS-ConvLSTM shows better spatial continuity. As for the torrential rainfall events, as shown

83



Remote Sens. 2023, 15, 3135

in Figure 9b, the rainfall duration is about 3–4 days. Regarding rainfall magnitude, GPM is
relatively large compared to the other two types of data. In terms of spatial distribution,
F-SVD shows abrupt changes, and the rainfall at a few points is significantly higher than at
other surrounding points, resulting in poor spatial continuity. Moreover, GPM and F-SVD
have single and multiple rainfall centers, respectively, and the distribution of both rainfall
centers is reflected in the fusion.

In general, GPM exhibits continuous spatial distribution but overestimates rainfall
events. F-SVD shows abrupt spatial variations but is more accurate in its response to
magnitude. FS-ConvLSTM combines the advantages of GPM in spatial distribution and
the advantages of F-SVD in magnitude, which display continuous spatial distribution and
closely approximate the actual rainfall values.

5. Discussion

The proposed FS-ConvLSTM framework effectively merges hourly precipitation data
from rain gauge and GPM observations, resulting in improved accuracy and reduced
uncertainty when estimating spatial precipitation. The framework’s ability to capture
the precipitation variation process and its superior performance compared to alternative
models highlight its potential for practical application in precipitation estimation.

The comparison results presented in Table 3 and Figure 6 demonstrate that the pro-
posed FS-ConvLSTM outperforms LSTM in terms of accuracy and stability. While tradi-
tional LSTM models only consider time-series dependencies, ConvLSTM combines the
strengths of LSTM and convolutional neural networks (CNN), allowing it to effectively
capture spatiotemporal dependencies and model both temporal and spatial dimensions [27].
Additionally, traditional LSTM primarily relies on matrix multiplication and element-wise
operations [28], which limits its capacity to model data nonlinearly. In contrast, by utilizing
multiple filters and the local connectivity of the convolution kernel, ConvLSTM can learn
richer feature representations and extract more complex spatiotemporal patterns in the data.
These characteristics contribute to the improved accuracy and stability of FS-ConvLSTM
observed in the comparison results.

Comparing the fusion results of FS-ConvLSTM for different magnitudes of rainfall
data (Table 4, Figures 6 and 7), it can be observed that the fusion results for heavy rainfall are
better. Heavy rains exhibit stronger spatial and temporal correlation and spatial expansion,
whereas small rains tend to be more localized and discrete. The convolution operation
in ConvLSTM utilizes shared weights across different spatial locations [29], enabling it
to effectively capture the spatial characteristics of heavy rainfall. Furthermore, heavy
rainfall events have longer durations, and past rainfall conditions can influence future
rainfall. The gating mechanism and memory units in ConvLSTM aid the model in retaining
and updating key spatiotemporal information [30], facilitating the capture of long-term
dependencies associated with heavy rainfall. These capabilities of ConvLSTM contribute to
its superior performance in understanding and fusing heavy rainfall data.

From the spatial distribution of the rainfall data before and after fusion presented in
Figures 8 and 9, it is evident that the fusion process retains the distribution features of both
data sources while achieving higher accuracy. The introduction of multiple input channels
in the ConvLSTM model enables the simultaneous processing of inputs from multiple
data sources [31]. This allows the model to leverage the strengths of each data source,
capture their spatial features, and retain the expression of these features in the fusion
results. Moreover, the ConvLSTM model exhibits a large capacity and nonlinear modeling
capability, enabling it to effectively handle the heterogeneity and nonlinear correlation
between different data sources during the fusion process [32]. The model learns adaptively
and adjusts the weights based on the importance and contribution of each data source. This
ability enables the model to identify and reduce the impact of data with large deviations on
the accuracy of fusion results, resulting in more accurate outcomes.

While the proposed framework successfully merges precipitation data from satellites
and rain gauges, it has certain limitations. The ConvLSTM method was chosen for this
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study due to its ability to capture spatial and temporal dependencies in rainfall data,
but alternative deep learning models such as Transformer-based models may also have
advantages in processing spatiotemporal structured data. Exploring and comparing the
performance of different architectures for precipitation data fusion would be a valuable
direction for future research. Additionally, it is important to note that the framework
proposed in this paper was tested in a single study region with a dense network of rain
gauges in southeast China, so expanding the study area and incorporating data from
additional stations would provide a more comprehensive understanding of the framework’s
performance across a larger spatial extent.

6. Conclusions

This study proposes an integrated framework (FS-ConvLSTM) to spatiotemporally
merge precipitation data from rain gauge observations and GPM (IMERG V06). The pro-
posed framework integrates F-SVD in the recommender system to improve the accuracy of
spatiotemporal interpolation based on rain gauge observations, and ConvLSTM merges
precipitation data from satellites and rain gauge interpolations by exploiting the spatiotem-
poral correlation pattern between them. The FS-ConvLSTM framework was applied to
estimate the hourly spatial precipitation in the Jianxi Basin of China from 2006 to 2018. The
findings are summarized as follows:

(1) The proposed FS-ConvLSTM framework outperforms the comparative models (IDW,
F-SVD, and LSTM) in terms of precipitation variation process description and rainfall
capture capability, reducing the RSME and FAR of the original GPM data by 63.6% and
63.1%, respectively, and increasing the CC and POD by 165% and 22.9%, respectively.

(2) The merged data not only improve the accuracy of the precipitation but also reduce
the uncertainty in precipitation estimation. As the intensity of precipitation increases,
the precipitation capture ability substantially improves, and the estimation more
closely matches the measured data in terms of total rainfall.

(3) Due to the powerful feature extraction capability of ConvLSTM, the merged precipita-
tion data combines the advantages of GPM and ground interpolation data with the
continuous spatial distribution data and values close to the actual one, and the spatial
aggregation of both data is reflected in the fusion.

The two-step merging framework proposed in this study demonstrates satisfactory
performance in merging hourly spatial precipitation data in the Jianxi basin of China by
exploring the spatiotemporal dependence between rain gauge and GPM. Different types of
precipitation data, such as Tropical Rainfall Measuring Mission (TRMM), the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks (PER-
SIANN), and the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS),
possess their unique characteristics and advantages. In this study, we only considered
merging data from rain gauges and GPM. To maximize the benefits of each satellite prod-
uct’s data and enhance the accuracy of spatial precipitation estimations, future work should
consider incorporating more multi-source precipitation observation data.
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Abstract: This paper addresses the problem of the two-dimensional direction-of-arrival (2D DOA)
estimation of low-elevation or non-low-elevation targets using L-shaped uniform and sparse arrays
by analyzing the signal models’ features and their mapping to 2D DOA. This paper proposes a 2D
DOA estimation algorithm based on the dilated convolutional network model, which consists of two
components: a dilated convolutional autoencoder and a dilated convolutional neural network. If there
are targets at low elevation, the dilated convolutional autoencoder suppresses the multipath signal
and outputs a new signal covariance matrix as the input of the dilated convolutional neural network
to directly perform 2D DOA estimation in the absence of a low-elevation target. The algorithm
employs 3D convolution to fully retain and extract features. The simulation experiments and the
analysis of their results revealed that for both L-shaped uniform and L-shaped sparse arrays, the
dilated convolutional autoencoder could effectively suppress the multipath signals without affecting
the direct wave and non-low-elevation targets, whereas the dilated convolutional neural network
could effectively achieve 2D DOA estimation with a matching rate and an effective ratio of pitch
and azimuth angles close to 100% without the need for additional parameter matching. Under the
condition of a low signal-to-noise ratio, the estimation accuracy of the proposed algorithm was
significantly higher than that of the traditional DOA estimation.

Keywords: 2D DOA estimation; low-elevation-angle targets; L-shaped uniform array; L-shaped sparse
array; dilated convolutional autoencoder; dilated convolutional neural network; 3D convolution

1. Introduction

Array signal processing, which has a wide range of applications in communica-
tions, remote sensing, detection, and radar, involves the use of sensor arrays to achieve
signal parameter estimation, signal enhancement [1], etc. Accordingly, direction-of-
arrival (DOA) estimation is an important branch of research. This involves estimating
the direction of arrival of one or more signals in a region of space using theoretical
or technical methods. One-dimensional (1D) DOA estimation is the estimation of the
elevation angle of targets. Two-dimensional (2D) DOA estimation, as an extension
of 1D DOA estimation, enables the estimation of both the elevation and the azimuth
angles [2]. Two-dimensional DOA is of greater importance for spatial localization and
is, therefore, one of the main focuses of current research in the field. Two-dimensional
DOA estimation requires arrays to be arranged in a 2D plane, generally using L-shaped
arrays, surface arrays, parallel arrays, or vector sensors [3,4]. Most 2D DOA estimation
algorithms extend the 1D DOA estimation algorithm to a 2D spatial spectrum, such
as the 2D multiple-signal classification (MUSIC) [5] algorithm and 2D estimating sig-
nal parameter via rotational invariance techniques (ESPRIT) algorithm. The former
can produce asymptotic unbiased estimates with high estimation accuracy without
the need for parameter matching, but this algorithm requires a 2D spatial spectrum
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search and has a high computational demand. On the other hand, the latter does not
require a spatial spectral search, and the elevation and azimuth angles can also be
automatically matched, but the estimation accuracy of this method is low, especially
when the signal-to-noise ratio (SNR) is low. Yin et al. proposed a DOA direction matrix
method [6], where the elevation and azimuth angles could be directly obtained via
eigendecomposition of the DOA direction matrix, with automatic parameter matching;
however, this method is only applicable to specific arrays such as parallel linear arrays.
To improve the estimation accuracy and spatial freedom, sparse arrays are often used
in practice instead of uniform arrays [7]. In a study on the 2D DOA estimation of
sparse arrays, Liu et al. proposed a 2D DOA estimation method based on singular
value decomposition [8], taking advantage of the structural characteristics of T-shaped
arrays and co-prime array arrays to obtain three signal subspaces without using virtual
elements before using the signal subspaces to perform 2D DOA estimation. Wang
et al. designed a generalized coprime parallel linear array instead of the traditional
parallel uniform linear array, then improved the differential virtual array to obtain
greater degrees of freedom, and finally simplified the 2D search to two 1D searches
to reduce the number of operations [9]. However, the algorithm led to an increase in
the influence of the mutual coupling between array elements, and the compression
factor needed to be artificially chosen, restricting the performance of the algorithm. In
addition, when the elevation angle of the target incident array is low, multipath effects
can occur, which can result in the received signal including reflected waves that are
coherent with the direct wave, thereby complicating 2D DOA estimation. For the 2D
DOA estimation problem of low-elevation-angle targets, Ma et al. proposed a 2D DOA
estimation algorithm based on the alternating direction method of multipliers [10],
which transforms the 2D DOA estimation into two 1D DOA estimation problems and
avoids the problem of the high computational demand caused by 2D joint estimation;
however, the algorithm could only solve the 2D DOA estimation of a single target. Su
et al. and Park et al. proposed 2D DOA estimation algorithms for coherent signals
based on sparse reconstruction [11,12], which could be used for the decoherence of
low-elevation targets; however, the algorithms had a complex arithmetic process. Liang
et al. proposed a 2D DOA estimation algorithm for coherent sources based on Toeplitz
matrix reconstruction [13], which could estimate the elevation and azimuth angles
without loss of array aperture through a 1D search only; however, the algorithm was
only applicable to uniform arrays. Molaei et al. proposed a k-medoids clustering signal
separation method that could realize the 2D DOA estimation of multipath signals and
effectively separate coherent and noncoherent signals [14]; however, the method was
only applicable to rectangular arrays.

Usually, physical model algorithms suffer from limited applicability and complex
computational processes, whereas data-driven deep-learning-based algorithms have greater
applicability. Compared with traditional signal processing algorithms, deep-learning-
like algorithms convert the DOA estimation problem into a high-dimensional nonlinear
mapping relationship, i.e., realizing mapping between the covariance matrix of the received
signal or other variables and the DOA, which provides a new way of thinking for the study
of 2D DOA estimation methods. Marija et al. implemented the fast estimation of spatial
single-target 2D DOA using a multilayer perceptron [15]; however, the artificial neural
network (ANN) model needed to expand the signal covariance matrix into 1D data as
input, thereby losing the spatial characteristics of the covariance matrix. Zhu proposed
a 2D DOA estimation algorithm based on deep ensemble learning [16], using multiple
convolutional neural networks to output the elevation and azimuth angles. This approach
was not limited by the deployment method; however, there was a matching problem of
elevation and azimuth angles.

To address the practical problems of the above algorithms, this paper proposes a 2D
DOA estimation model based on the combination of a dilated convolutional autoencoder
and a dilated convolutional neural network, whereby the former solves the coherence
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problem of direct and reflected waves by suppressing the multipath signal, i.e., filtering
out the reflected wave components of the signal covariance matrix, while the latter is used
to implement 2D DOA estimation. Both the dilated convolutional autoencoder and the
dilated convolutional neural network are convolved in three dimensions to fully extract the
spatial features of the data; accordingly, the model is able to achieve the 2D DOA estimation
of non-low-elevation targets and hybrid targets in L-shaped uniform and L-shaped sparse
arrays without the need for parameter matching.

2. Signal Model

2.1. L-Shaped Array Signal Model

When the array arrangement is in one dimension, only 1D DOA estimation can be
realized. If 2D DOA estimation is required for the source, i.e., elevation and azimuth, the
array arrangement needs to be at least 2D. In this study, an L-shaped array was designed
to perform 2D DOA estimation. When the L-shaped array consists of two mutually
perpendicular uniform line arrays, its arrangement is as shown in Figure 1.

 

Figure 1. L-shaped array arrangement.

The array elements are uniformly arranged along the X and Y axes, with an array
element spacing of d and less than half a wavelength λ; and the number of X- and Y-axis
array elements are M and N, respectively, with overlapping array elements at the origin
of the coordinate axis, so the total number of array elements is (M + N − 1). Consider
K(K < M + N − 1) far-field uncorrelated narrowband signals incident to the L-shaped
array in the directions (α1,β1), (α2,β2) . . . (αK,βK) (k = 1, 2, . . . , K), where αk and βk are
the angles of the target to the X and Y axis, respectively, also known as the spatial phase
factor; ϕk and θk denote the elevation and azimuth angles of the target, respectively; and
the correspondence between αk, βk and ϕk, θk is shown below:

cosαk = sinϕkcosθk, (1)

cosβk = sinϕksinθk, (2)

The received signals for a uniform line array along the X- and Y-axis directions are

x1(t) = A1s(t) + n1(t), (3)

x2(t) = A2s(t) + n2(t), (4)

where s(t) = [s1(t), s2(t), . . . , sK(t)]
T denotes the signal vector; n1(t) and n2(t) denote

gaussian white noise with noise power σ2 and uncorrelated with the signal, respectively;
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and A1 and A2 are the direction vectors of uniform line arrays in the X- and Y-axis direc-
tions, respectively.

A1 = [a(α1), a(α2), . . . , a(αK)], (5)

A2 = [a(β1), a(β2), . . . , a(βK)], (6)

X : a(αk) =

[
1, e−

j2πdcosαk
λ , . . . , e−

j2π(M−1)dcosαk
λ

]T

, (7)

Y : a(βk) =

[
e−

j2πdcosβk
λ , e−

j2π2dcosβk
λ . . . , e−

j2π(N−1)dcosβk
λ

]T

, (8)

Combining Equations (3) and (4) yields

x(t) =
[
x1

H(t)x2
H(t)

]T
= B(ϕ, θ)s(t) + n(t), (9)

where B(ϕ, θ) =
[
A1

H , A2
H
]T and n(t) =

[
n1

H(t), n2
H(t)

]T , calculate the received signal
covariance matrix according to Equation (9), i.e.,

Rx = E
[
x(t)xH(t)

]
= B(ϕ, θ)RsBH(ϕ, θ) + σ2IM+N−1, (10)

where Rs = E
[
s(t)sH(t)

]
denotes the incident signal covariance matrix, and IM+N−1

denotes the unit matrix of dimension M + N − 1. The eigendecomposition of the received
signal covariance matrix Rx can be divided into a signal subspace and a noise subspace,

Rx = UΣUH = UsΣsUH
s + UnΣnUH

n , (11)

where Σ denotes the diagonal matrix constructed from all the eigenvalues obtained from
the eigen decomposition; U denotes the eigenvector matrix; Σs denotes the diagonal
matrix constructed from the K largest eigenvalues in Σ equal to the number of signals;
Us denotes the eigenvector corresponding to the K largest eigenvalues, considered as the
signal subspace; Σn denotes the diagonal matrix constructed from the remaining (M + N −
1 − K) eigenvalues; Un the eigenvectors corresponding to the remaining eigenvalues, which
are regarded as the noise subspace. According to the theory of the MUSIC algorithm, the
signal subspace and the noise subspace have orthogonal properties, and Un is orthogonal
to b(ϕ, θ) column vector in B(ϕ, θ), and the spatial spectrum P(ϕ, θ) is calculated according
to the 2D MUSIC algorithm, as follows

b(ϕ, θ) = [a H(α), aH(β)
]T

, (12)

P(ϕ, θ) ==
1

bH(ϕ, θ)UnUH
n b(ϕ, θ)

, (13)

The elevation and azimuth angles (ϕ, θ) can be obtained by searching for the peak
points of the 2D spatial spectrum within the target airspace. Taking an L-shaped uniform
array with the number of elements in the X and Y axis being 8 and 9, respectively, as an
example, when three targets with elevation and azimuth angles of (10◦, 30◦), (20◦, 10◦),
and (40◦, 20◦) are incident on the array with SNR = 10 dB and snapshots = 100, the spatial
spectrum and its top view were obtained after a 2D search, as shown in Figure 2.
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(a) (b) 

Figure 2. Spatial spectrum and top view of L-shaped uniform array. (a) Spatial spectrum of L-shaped
uniform array. (b) Top view of L-shaped uniform array.

Figure 2 shows that the 2D MUSIC algorithm can effectively estimate elevation and
azimuth with a high degree of accuracy. In practice, sparse arrays are often used instead of
uniform line arrays to reduce the effect of the mutual coupling between array elements on
the accuracy of DOA estimation and to increase the number of measurable sources [17].
Although the arrangement of sparse arrays can largely reduce the actual number of ar-
ray elements, they often produce ambiguous angles, i.e., spurious spectral peaks, which
interfere with the judgement. Taking an L-shaped uniform sparse array with an array
element spacing of 2λ as an example, the spatial spectrum and its top view under the same
conditions as above are shown in Figure 3.

 
(a) (b) 

Figure 3. Spatial spectrum and top view of L-shaped uniform sparse array. (a) Spatial spectrum of
L-shaped uniform sparse array. (b) Top view of L-shaped uniform sparse array.

Figure 3a shows that the spatial spectrum contains five distinct spectral peaks, the
corresponding coordinates of which coincide with the center of the circle in Figure 3b,
which are sharper than the spectral peaks in Figure 2. However, there are two blurred
angles in it. To address the problem of the blurring generated by sparse arrays, the use of
coprime arrays can avoid the generation of blurred angles, so coprime arrays are widely
used in practice. The array element arrangements of the X and Y axes are changed to the
mutual prime number (4, 5) and (3, 7), respectively; and the array element arrangement of
the X and Y axis are

X : (0, 4, 5, 8, 10, 12, 15, 16)λ/2, (14)

Y : (0, 3, 6, 7, 9, 12, 14, 15, 18)λ/2, (15)
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The number of arrays on the X and Y axis is 8 and 9, respectively; and, under the same
conditions as above, the spatial spectrum and its top view were calculated as shown in
Figure 4.

 
(a) (b) 

Figure 4. Spatial spectrum and top view of L-shaped coprime array. (a) Spatial spectrum of L-shaped
coprime array. (b) Top view of L-shaped coprime array.

As can be seen in Figure 4, the spatial spectrum contains three spectral peaks, which
correspond to the center of the circle in the top view. The sharpness of the spectral peaks
is similar to that in Figure 3 and better than that in Figure 2, but there is no blurring of
the angles, and the resulting elevation and azimuth angles of the target are both highly
accurate. When replacing only the uniform line array in the X or Y axis with a coprime
array, but not both, the spatial spectrum is obtained as follows.

The blurred spectral peaks are also avoided when the array with only one axis is
replaced with a coprime array, as shown in Figure 5, which is slightly less sharp compared
with those in Figures 3a and 4a. A comparison of Figure 5a,b shows that the spectral peaks
are narrower in elevation when the X axis is a coprime array and narrower in azimuth
when the Y axis is a coprime array but still better than that in Figure 2a, overall.

 
(a) (b) 

Figure 5. Spatial spectrum when the X or Y axis is a coprime array. (a) Coprime array in X axis.
(b) Coprime array in Y axis.

2.2. Low-Elevation-Target Signal Model

The multipath effect occurs when the elevation angle of the incident to the array is
low, producing a reflected wave that is coherent with the direct wave [18] in its elevation
angle dimension. The multipath effect is shown in Figure 6.
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Figure 6. Schematic representation of the multipath effect in the elevation angle dimension.

To simplify the model, only multipath effects at the receiver side are considered. The
target direct wave signal is incident on the array at an elevation angle ϕd, reflected by a
smooth surface, and the reflected wave signal is incident on the array at an angle ϕs(ϕs < 0).
Let the height of the target be H and the height of the center of the array be h. The difference
in the wave range between the direct and reflected waves [19] is approximated as

∆R = Rd − Rs = Rd − (R1 + R2) ≈ 2hsinϕd, (16)

According to the position relationship in Figure 6, the relationship between the direct
and reflected angles satisfies Equation (17),

ϕs = arctan(
H + h

H − h
tanϕd), (17)

When there are K (K < M + N − 1) incoherent sources in a space that includes Q(Q ≤K)
low-elevation targets, the number of signals received by the array is (K + Q), which
includes Q direct wave signals from low-elevation targets, Q reflected wave signals from
low-elevation targets, and (K − Q) non-low-elevation signals. The direction vectors a(αk)
and a(βk) for non-low-elevation targets have the same Equation (5) to (7), while the
direction vectors a

(
αq

)
and a

(
βq

)
for low-elevation targets can be synthesized to include

both direct and reflected angles and are expressed as follows

a
(
αq

)
= a
(

ϕqd

)
+ ρa

(
ϕqs

)
, (18)

X :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a
(

ϕqd

)
=

[
1, e−

j2πdsinϕqdcosθqd
λ , . . . , e−

j2π(M−1)dsinϕqdcosθqd
λ

]T

a
(

ϕqs

)
=

[
1, e−

j2πdsinϕqscosθqs
λ , . . . , e−

j2π(M−1)dsinϕqscosθqs
λ

]T (19)

a
(

βq

)
= a
(

θqd

)
+ ρa

(
θqs

)
(20)

Y :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

a
(

θqd

)
=

[
e−

j2πdsinϕqdsinθqd
λ , e−

j2π2dsinϕqdsinθqd
λ . . . , e−

j2π(N−1)dsinϕqdsinθqd
λ

]T

a
(
θqs

)
=

[
e−

j2πdsinϕqssinθqs
λ , e−

j2π2dsinϕqssinθqs
λ . . . , e−

j2π(N−1)dsinϕqssinθqs
λ

]T (21)

where a
(

ϕqd

)
and a

(
ϕqs

)
denote the direction vectors of the direct and reflected angles in

the X axis, respectively; a
(

θqd

)
and a

(
θqs

)
denote the direction vectors of the direct and

reflected angles in the Y axis,; ρ = ρ0exp(−j2π∆R/λ) denotes the multipath attenuation
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coefficient; and ρ0 denotes the specular reflection coefficient. In the spatial model, the
azimuthal angles of the direct and reflected waves are equal, i.e.,

θq = θqd = θqs (22)

Substituting Equations (17) and (22) into a
(

ϕqd

)
and a

(
ϕqs

)
as well as a

(
θqd

)
and

a
(
θqs

)
, i.e.,

X :

⎧
⎨
⎩

a
(

ϕqd

)
=
(

exp
(
−j2π(i)dsinϕqdcosθq/λ

))
1×M

, i = 0, 1, M − 1

a
(

ϕqs

)
=
(

exp
(
−j2π(i)dsin

(
arctan

(
H+h
H−h tanϕqd

))
cosθq/λ

))
1×M

, i = 0, 1, M − 1
(23)

Y :

⎧
⎪⎨
⎪⎩

a
(

θqd

)
=
(

exp
(
−j2πidsinϕqdsinθq/λ

))
1×(N−1)

, i = 1, 2, . . . , N − 1

a
(
θqs

)
=
(

exp
(
−j2π(i)dsin

(
arctan

(
H+h
H−h tanϕqd

))
sinθq/λ

))
1×(N−1)

, i = 1, 2, . . . , N − 1
(24)

The direction vectors in the X and Y axis are

A1 =
[
a(ϕ1d) + ρa(ϕ1s), . . . , a

(
ϕQd

)
+ ρa

(
ϕQs

)
, a
(
αQ+1

)
, . . . , a(αK)

]
, (25)

A2 =
[
a(θ1d) + ρa(θ1s), . . . , a

(
θQd

)
+ ρa

(
θQs

)
, a
(

βQ+1
)
, . . . , a(βK)

]
(26)

The received signal and its covariance can be calculated according to Equations (9)
and (10). When the array is an L-shaped sparse array, the spacing of the array elements in
the signal direction vector will change, corresponding to the sparse array element spacing,
and the received signal and signal covariance matrix will change accordingly. The 2D DOA
estimation becomes more complex when there is a low-elevation signal in the received
signal, and the existing algorithms, whether for L-shaped uniform arrays or L-shaped
sparse arrays, are not easy and accurate to implement 2D DOA estimation, and most of
them can only be used for a specific array structure or a single low-elevation signal [20].
In contrast, from the signal model, there is a correspondence between the array signal
covariance matrix and the elevation and azimuth angles of the targets (including low-
elevation targets), i.e., in the absence of low-elevation targets, the 2D DOA relationship
between the received signal covariance matrix and the target can be regarded as

Rx → f ((ϕ1, θ1), (ϕ2, θ2), . . . , (ϕK, θK)) (27)

When low-elevation targets are present,

Rx → f
(
(ϕ1d, θ1), (ϕ1s, θ1), . . . ,

(
ϕQd, θQ

)
,
(

ϕQs, θQ

)
,
(

ϕQ+1, θQ+1
)
, (ϕK, θK)

)
(28)

which includes Q low-elevation targets, combined with Equation (17) above, Equation (23)
can be further rewritten as

Rx → f ′
(
(ϕ1d, θ1), . . . ,

(
ϕQd, θQ

)
, ,
(

ϕQ+1, θQ+1
)
, (ϕK, θK)

)
(29)

On this basis, the above mapping relations can be obtained with the help of deep
learning, providing new ideas and methods to solve the problem of 2D DOA estimation for
L-shaped uniform arrays or sparse arrays in the presence of low-elevation-angle signals.

3. Dilated Convolution Network Model

Due to the significant difference in the direction vector generation process between
low-elevation signals and non-low-elevation signals, when there are low-elevation targets in
space, conventional algorithms will first decoherence and then implement DOA estimation.
The flow of the algorithm proposed in this paper is shown in Figure 7 below.
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Figure 7. The flow of dilated convolution networks model.

As can be seen in Figure 7, when solving the DOA estimation problem, it firstly
determines whether there are low-elevation targets. When there are low-elevation targets,
the reflected wave components are filtered out by the dilated convolutional autoencoder
(DCAE) to achieve multipath suppression, and then the 2D DOA estimation is achieved
by the dilated convolutional neural network (DCNN). When there is no low-elevation
target signal in space, no multipath suppression is required, so the 2D DOA estimation
can be directly achieved by the DCNN. Output1 and Output2 in Figure 7 are two output
branches, which are the elevation angle sequence and azimuth angle sequence, respectively,
corresponding to the same position in two sequences that belongs to the same target, which
can be automatically matched.

It should be added that when the covariance matrix of the received signal is used
as the input to a neural network model for model training (decoherence or angle
estimation), the real part of the covariance matrix is usually retained or the real and
imaginary parts are stitched together to form an N × 2N (N denotes the total number of
array elements) real matrix, which may make the data information incomplete or affect
the extraction of spatial features. In the model design process, the real and imaginary
parts of the covariance matrix are expanded into a 3D matrix to form an N × N × 2 3D
matrix as the input and for training, so that the spatial features can be more fully and
comprehensively extracted.

3.1. Dilated Convolutional Autoencoder Mode

The convolutional autoencoder is a type of autoencoder, which is a self-supervised
learning algorithm that encodes and decodes data through convolutional operations so that
the output data can reproduce the input data, and has a wide range of applications in data
compression, data denoising, and anomaly detection [21,22]. The traditional convolutional
autoencoder consists of an encoding process and a decoding process, in which the former
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consists of alternating convolutional and pooling layers, with the convolutional layer used
to extract features and the pooling layer used to reduce the dimensionality of the data; the
latter consists of alternating deconvolution and upsampling layers, with the deconvolution
being essentially the same as the convolutional layer [23], and the upsampling layer mainly
achieving the recovery of data dimensionality. However, for the array received signal
covariance matrix, the number of array elements is limited and the size of the covariance
matrix is limited and often not very large, so the pooling layer is likely to cause insufficient
feature extraction and loss of relevant features. Therefore, we discarded the pooling layer
on the basis of the traditional convolutional autoencoder, and we introduced the dilation
convolution to achieve data compression without data loss, DCAE model is as shown in
Figure 8.

 

Figure 8. The model of DCAE.

In Figure 8, Rx denotes the received signal covariance matrix containing the reflected
angle, i.e., the original signal covariance matrix; R′

x denotes the received signal covari-
ance matrix without the reflected angle, containing only the direct and azimuth angles of
the low-elevation target and the elevation and azimuth angles of the non-low-elevation
target; and Re(∗) and Im(∗) denote the real and imaginary parts of the signal, respec-
tively. The encoding and decoding processes are abstracted into the following mapping
relationships, respectively,

Encoding : y = fe(Rx), (30)

Decoding : R’
x = fd(y), (31)

Then, the dilated convolutional autoencoder action proposed in this paper can be
further described as

R’
x = fd( fe(Rx)), (32)

This means that a mapping between a covariance matrix with reflection angles and
a covariance matrix without reflection angles is achieved. In the encoding process, the
convolution operation proceeds as

hn = f (R ∗ wn + bn), (33)

where R denotes the input 3D matrix; w denotes the 3D convolution kernel, whose
number is n; bn denotes the bias; and f (∗) denotes the activation function. The decoding
process performs the deconvolution operation, which is essentially the same as the con-
volution operation. The two convolutional layers in the blue box in Figure 8 are regular
convolutional operations with padding, which aims to preserve the boundary features.
The two convolutional layers in the green box are dilated convolutional operations, the
sizes of the convolutional kernels are 3 × 3 × 2 and 3 × 3 × 1, and the dilation rate is
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(3, 3, 1). The loss function of the DCAE model is a binary cross-entropy function, whose
expression is

bce = −∑
N

i=1 ∑
N

j=1 (rijlog(r′ij) + (1 − rij)log(1 − r′ij)), (34)

where N denotes the total number of samples; and rij and r′ij denote the predicted and true
values, respectively.

Dilated Convolution

Dilated convolution is a kind of convolution idea to address the problem of information
loss caused by connecting pooling layers after the standard convolution process [24]. The
principle involves adding holes to the standard convolution map, using the holes to make
the original convolution kernel have a larger reception field without increasing the number
of parameters and operations [25]. Taking 2D convolution as an example, the dilation rate
contains two values, which represent the magnitude of the distance between the value
in the convolution kernel in the horizontal and vertical directions and its adjacent value
position; when the convolution kernel size is 3 × 3, the reception field at different dilation
rates is as shown in Figure 9.

   
(a) (b) (c) 

Figure 9. Reception fields at different dilation rates: (a) dilation rate = (1,1), (b) dilation rate = (2,2),
and (c) dilation rate = (3,3).

The blue dots in Figure 9 represent the values of the convolution kernel, and the
blue boxes represent the receptive fields under the convolution kernel; the positions in
the receptive field area not filled with dots are hole., When the convolution operation is
performed, the empty positions are filled with a value of 0. As shown in Figure 9a, the
dilation rate is (1, 1), which is the standard convolution; the values in the convolution
kernel are adjacent to each other; and the sizes of the receptive field and the convolution
kernel are the same. The dilation rate in Figure 9b is (2, 2), i.e., the difference in the
position between adjacent values in the convolution kernel is 2, so when the dilation
rate is (2, 2), the size of the receptive field is the same as when the convolution kernel is
5 × 5. In Figure 9c, the dilation rate is (3, 3), the difference in the position of the values
is 3, and the size of the receptive field is 7 × 7. The dilated convolution achieves an
increase in the receptive field with the same convolution kernel and avoids an increase
in computational effort.

3.2. Dilated Convolutional Neural Network Model

When there is no low-elevation target in the space target or the signal covariance
matrix containing the low-elevation target has been suppressed by the DCAE model, the
elevation and azimuth angles of the signal are obtained by the DCNN model. The structure
of the model is shown in Figure 10.
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Figure 10. The model of DCNN. DR = dilation rate.

As can be seen in Figure 10, the model consists of five convolutional layers and four
fully connected layers. The first two of the convolutional layers are standard convolu-
tional layers with convolutional kernel sizes of 3 × 3 × 2, and the last three are dilated
convolutional layers with convolutional kernel sizes of 3 × 3 × 2, 3 × 3 × 1, and 3 × 3 × 1,
separately. The model contains two separate output branches for elevation and azimuth
angles. Because the output of a convolutional neural network is sensitive to order, the two
output branches for the elevation and azimuth angles correspond in order and no match-
ing is required. Similar to DCAE, the input to the model, which consists of the real and
imaginary parts of the covariance matrix in three dimensions, and the convolutional layers
in the model are all 3D convolutional operations; the pooling layer is also removed from
the convolutional neural network. The activation function for both the convolutional and
fully connected layers is the ReLU function [26], which is characterized by fast convergence
and no saturation of gradients, so is widely used in the training of convolutional neural
network models [27]. Both output branches of the model are estimated angular values,
which are regression problems, so the loss function of the model is the mean squared loss
function, i.e.,

mse =
∑

N
i ((ϕi − ϕ′

i)
2 + (θi − θ′i)

2
)

2N
, (35)

where ϕi and ϕ′
i denote the real and estimated values of the elevation angle, respectively;

θi and θ′i denote the real and estimated values of the azimuth angle, respectively; and N
denotes the number of targets.

4. Simulation Experiments and Analysis of Results

In the simulation experiment, we used 16 array elements; 8 and 9 uniform arrays
in the X and Y axis, respectively; and the sparse arrays were two coprime arrays with
coprime numbers (4, 5) and (3, 7). The total number of arrays was 16 due to the existence
of a common element at the origin. The range of low elevation angles in the spatial signal
where multipath effects occur was (0◦, 10◦], the range of non-low elevation angles was (10◦,
60◦], and the range of azimuth angles was [−90◦, 90◦]. The DCAE and DCNN models are
shown in Figures 8 and 10 above. The number of convolutional kernels for each layer of the
encoding process in the DCAE model was 200, 200, 150, and 150 in order in the decoding
process, i.e., 150, 150, 200, and 200. The size of the kernels and the dilation rate were set
as in Figures 8 and 10. The number of neurons in each layer of the fully connected layer
was 1500, 1500, 1000, and 1000 in that order. The capacity of the training set for different
formations was 50,000, the size of the test set was 2000, the number of iterations was 5000,
and the batch size was 100.

4.1. Verification of Dilated Convolutional Autoencoder Mode Validity

Test case 1: The formation is an L-shaped uniform array. There are two targets in space,
one of which is a low-elevation target with direct and reflected angles of 3.216◦ and −5.957◦

for elevation, respectively, and 38.472◦ for the azimuth; the other is a non-low-elevation
target with a 38.293◦ elevation and 48.506◦ azimuth; SNR is 10 dB; and snapshot is 100.
After multipath suppression, the angle was estimated by the 2D MUSIC algorithm (the 2D
search angle interval was 1◦), and the spatial spectrum is shown in Figures 11 and 12.
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Figure 11. Spatial spectrum of test case 1 obtained by DCAE MUSIC.

Figure 12. Spatial spectrum of (a) elevation and (b) azimuth angles of test case 1 obtained by
DCAE MUSIC.

As can be seen in Figures 11 and 12, there are two distinct spectral peaks in the spatial
spectrum, corresponding to the low-elevation target and the non-low-elevation target in
the signal; there is no spectral peak for the reflected angle in Figure 12a. Comparing the
azimuth of the low-altitude target, the spectral peaks of its elevation angle are sharper,
while the difference between the sharpness of the azimuth and elevation angles of the non-
low-altitude target is not significant. From the angle estimation accuracy and Figure 12a,b,
we concluded that the elevation and azimuth angles of the low-altitude target are about 3◦

and 38◦, respectively; and the elevation and azimuth angles of the non-low-altitude target
are about 38◦ and 49◦, respectively, which are close to the target angle in test case 1, for
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the existence of a low-elevation target in space. The DCAE model can effectively filter the
reflected angular component of a low-elevation target and a non-low-elevation target in
space, without interfering with the direct angle of arrival and the non-low-elevation target.

Test case 2: The array is L-shaped sparse array. There are two low-elevation targets
and one non-low-elevation target in space, where the direct and reflected angles of the
low-elevation targets are 1.999◦ and −3.708◦, and 8.000◦ and −18.937◦, respectively; the
azimuth angles of the two low-elevation targets are 1.904◦ and 1.478◦; the elevation and
azimuth angles of the non-low-elevation targets are 33.743◦ and 30.509◦, respectively; SNR
is 10 dB; and the snapshot is 100. After filtering the reflected angle, the angle was estimated
by the 2D MUSIC algorithm (the 2D search angle interval was 1◦), and the spatial spectrum
is shown in Figure 13.

−−−−

− −

Figure 13. Spatial spectrum of test case 2 obtained by DCAE MUSIC: (a) 3D view of the 2D spatial
spectrum, (b) top view of the 2D spatial spectrum, (c) spatial spectrum of azimuth angles, and
(d) spatial spectrum of elevation angles.

Figure 13a shows the spatial spectrum of the 2D search, and Figure 13b shows the top
view of the spatial spectrum, from which it can be seen that there are three spectral peaks
in the spatial spectrum, with the non-low-elevation target having the lowest peak value.
Figure 13c shows the azimuth angle, containing three spectral peaks corresponding to 1◦,
2◦, and 31◦; Figure 12d shows the elevation angle, also containing three spectral peaks
corresponding to 1◦, 8◦ and 33◦. The elevation and azimuth angles of the three targets
obtained from Figure 13 are essentially the same as the actual angles in test case 2 and are
not affected by the formation. When the three targets in test case 2 were estimated with
2D MUSIC (without the reflected angles), the spatial spectrum was obtained as shown in
Figure 14.

Comparing Figures 13 and 14, the two spatial spectral distributions are basically the
same. We verified that when there are multiple low-elevation targets in space, the DCAE
algorithm can effectively suppress multipath without interfering with the estimation of
direct-angle and non-low-elevation targets. Test cases 1 and 2 verify that the DCAE model
can effectively achieve “de-multipathing” and that the DCAE model is valid.
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Figure 14. Spatial spectrum of test case 2 (without the reflected angles) obtained with 2D MUSIC:
(a) 3D view of the 2D spatial spectrum. (b) Top view of the 2D spatial spectrum. (c) Spatial spectrum
of azimuth angles. (d) Spatial spectrum of elevation angles.

4.2. Verification of Dilated Convolutional Neural Network Model Validity

The arrays were L-shaped uniform (LUA) and L-shaped sparse array (LSA), as de-
scribed above; SNR was 10 dB; snapshot was 100; the numbers of targets were 2 and 3,
respectively; and all were non-low-elevation targets. The efficiency rate, matching rate, and
root mean square error of the angle estimation were used as the performance evaluation
metrics of DCNN for 2D DOA estimation. When the angular error in the output is not
greater than 5◦, the angle is regarded as a valid angle. The proportion of valid angles to
all output angles is the efficiency rate PE; the matching rate PM indicates the proportion
of azimuth and elevation angles that are accurately matched according to their positions,
and the root mean square error (RMSE) is a common measure in DOA angle estimation; its
expression is

RMSE =

√√√√ 1
N

N

∑
i=1

(
θ′i − θi

)2, (36)

where N denotes the total number of test sets, θ′i denotes the angle estimate output by the
model, and θi denotes the actual angle value. After 200 Monte Carlo experiments, PE, PM,
and RMSE were statistically obtained as shown in Table 1,

Table 1. PE, PM, and RMSE for non-low-elevation targets obtained with DCNN.

Type Target Number PE/% PM/% RMSE/◦ RMSEe/◦ RMSEa/◦

LUA
2 99.98 100 0.3697 0.2901 0.4352
3 99.97 100 0.3083 0.2710 0.3412

LSA
2 99.99 100 0.3507 0.2548 0.4256
3 100 100 0.2768 0.2602 0.2759

In Table 1, RMSE/◦ indicates the RMSE for all outputs; RMSEe and RMSEa denote
the RMSE for elevation and azimuth angles respectively. From Table 1, it can be seen that
all PE values are close to 100%, PM reaches 100%, and the elevation and azimuth angles
of the targets in the two output branches can achieve one-to-one correspondence without
parameter matching. From the RMSE results, 2D DOA estimation accuracy is better than
that of the L-shaped uniform array when the array type is L-shaped sparse array, and the
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estimation effect is better than that when the number of sources is three than when the
number of sources is two. The estimation accuracy for elevation angle is slightly higher
than that for azimuth angle in all conditions above.

When there were three targets in a space that contains two low-elevation-angle targets,
PE, PM, and RMSE were calculated after 200 Monte Carlo experiments using the DCAE-
DCNN and DCNN models (without the reflected angle in the model output); the results
are shown in Table 2.

Table 2. PE, PM, and RMSE for low-elevation targets obtained with DCNN and DCAE-DCNN. “Low”
and “Non-Low” denote the elevation angle of low-elevation target and non-low-elevation target in
all targets, respectively.

Type Model PE/% PE/% RMSE/◦
RMSEe/◦

RMSEa/◦
Low Non-Low

LUA
DCNN 85.74 97.35 1.6782 1.5757 1.5302 1.7946
DCAE-
DCNN 99.98 100 0.3441 0.2913 0.2893 0.3898

LSA
DCNN 87.36 96.77 1.6813 1.6710 1.6276 1.7125
DCAE-
DCNN 99.99 100 0.2975 0.2851 0.2720 0.3124

Table 2 shows that when only DCNN was applied for the 2D DOA estimation for
multiple targets including low-elevation targets, it was not effective. Despite the high PE,
PM is low, and the RMSEs of the elevation and azimuth angles are much higher than those
of DCAE-DCNN method, which indicates that the 2D DOA estimation problem could
not be directly solved when the signal contained low-elevation targets using the DCNN
method alone. As such, decoherence or de-multipathing of the received signal is necessary.
Additionally, when the DCAE-DCNN algorithm was used, PE and PM were close to 100%,
RMSEs were lower, and PE and PM were higher when the array type was LSA than LUA.
The RMSE of the elevation angle was slightly lower than that of the azimuth angle; the
RMSEs of the non-low-elevation targets were slightly lower than those of the low-elevation
targets. Comparing Tables 1 and 2, the results using the DCAE-DCNN algorithm when
low-elevation angle targets are present in the signal are similar to those when only the
DCNN algorithm is used when low-elevation angle targets are not present. The RMSE
of the former is slightly higher, which proves that the DCNN algorithm is effective and
stable, and the DCAE-DCNN algorithm has a better estimation effect for the presence of
low-elevation targets.

4.3. RMSE of 2D DOA Estimation at Different SNRs with Non-Low-Elevation Targets

In general, the variation in the SNR has a significant effect on the accuracy of DOA
estimation. In this set of simulation experiments, 3 non-low-altitude targets were in space,
array types were LUA and LSA, the number of snapshots was 200, and SNR was −10 dB,
−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, or 20 dB. The proposed DCNN model was used for
angle estimation, and its results were compared with those of the 2D MUSIC algorithm to
calculate the RMSE, as shown in Figure 15.

As can be seen from Figure 15a,b, the RMSE of both the elevation and azimuth angles
decrease as SNR increases, and the higher SNR, the higher the estimation accuracy. From
Figure 15a,b, it can be seen that the estimation accuracy of LSA is higher than that of LUA
for the same algorithm. For the same array type, when the SNR was less than 10 dB, the
estimation accuracy of both the elevation and azimuth angles significantly improved as the
SNR increased, and the estimation performance of the DCNN algorithm was significantly
better than that of 2D MUSIC. When the SNR was greater than 10dB, the decreasing trend
of the RMSE became slower; for LUA, the DCNN algorithm’s estimation accuracy for
the azimuth angles was slightly lower than that of 2D MUSIC, and for elevation, it is
slightly higher than that of 2D MUSIC. For LSA, DCNN algorithm’s estimation accuracy for
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elevation was better than that of 2D MUSIC, while the estimation accuracy for the azimuth
angles was approximately equal between the two. By comparing Figure 15a,b, it can be
seen that for either array type, DCNN algorithm’s estimation accuracy for elevation angles
is higher than that for the azimuth angles under each SNR condition, while the difference in
the estimation performance of the 2D MUSIC algorithm for elevation and azimuth angles
is not significant.
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Figure 15. RMSE comparison at different SNRs with non-low-elevation targets: (a) elevation angles
and (b) azimuth angles.

4.4. RMSE of 2D DOA Estimation at Different SNRs with Low-Elevation Targets

In this set of simulations, the number of spatial targets was 3, including 2 low-elevation
targets; the array type was the above LUA and LSA; the number of snapshots was 200; and
the SNR was −10 dB, −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, or 20 dB. The DCAE-DCNN model
proposed in this paper was used to perform 2D DOA estimation according to the process
in Figure 7. Because most of the sparse array decoherence before 2D DOA estimation is for
uniform surface arrays or other specific arrays, the Toeplitz matrix reconstruction algorithm
proposed in the literature [13] and MSSP-MUSIC for 2D DOA estimation of LUA were
used as comparison experiments in this set of simulations. The calculated RMSEs for the
elevation and azimuth angles under each algorithm are shown in Figure 16.

In Figure 16, with the increase in the SNR, the RMSE of each algorithm for the es-
timation of elevation and azimuth angles shows a decreasing trend, and the estimation
performance increases accordingly. When the SNR is less than 10 dB, RMSE significantly
decreases as SNR increases, and the estimation accuracy of the proposed algorithm is
significantly higher than that of the other two algorithms. When the SNR is greater than 10
dB, the decreasing trend in RMSE decreases, and the estimation accuracy of the proposed
algorithm for LUA is close to multiple Toeplitz matrices reconstruction (MTOEP) method in
the literature [13]. Comparing Figures 15 and 16, when there is a low-elevation target in the
signal, the estimation accuracy of both the elevation and azimuth angles is degraded after
de-multipathing by the proposed DCAE model, because when the signal is de-multipathed
by the DCAE model, it may lead to new errors in the signal covariance matrix, which affects
the estimation accuracy to a certain extent.

The estimation accuracy for the elevation angle is slightly higher than that for the
azimuth angle for both algorithms proposed in this paper and MTOEP method proposed in
the literature [13] in Figures 15 and 16. For the proposed algorithm, the reason for this is that
when designing the DCNN model, the output sequence of the elevation angle is arranged
in the order from smallest to largest, and the angles with the same position number in both
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outputs correspond to the same target, while the order of the azimuth angle is affected by
the elevation angle, resulting in the output of branch 2 being affected by branch 1. The
MTOEP method in the literature [13] estimates the azimuthal angle based on the elevation
angle first, so the RMSEs for the azimuthal angle of the above two algorithms are slightly
larger than those for the elevation angle. However, when the MUSIC algorithm performs
a two-dimensional search, it traverses the entire two-dimensional space, and the priority
traversal order of the elevation and azimuthal angles does not affect the results, which
are equivalent, so the difference between the RMSE of the elevation angle and azimuthal
angles is not significant.
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Figure 16. RMSE comparison at different SNRs with low-elevation targets: (a) elevation angles and
(b) azimuth angles.

5. Discussion

For a long time, 2D DOA estimation has been of great importance in the field of array
signal processing. The 2D DOA estimation of low-elevation targets, especially when the
array elements are sparsely arranged, is a key and difficult problem for research in this
field. The development of deep learning has provided new ideas to solve such problems.
To address this problem, we developed a 2D DOA estimation algorithm based on a dilated
convolutional autoencoder and s dilated convolutional neural network, which requires
the total number of targets in space and the presence of low-elevation angles to be known
quantities. When low-elevation targets are present in space, multipath suppression is
applied to the received signal covariance matrix with DCAE, and then DCNN is used for
2D DOA estimation. Additionally, when there is no low-elevation target in space, 2D DOA
estimation can be directly achieved using DCNN. The simulation experiments showed
that when there are low-elevation targets in space, DCAE can effectively achieve multipath
suppression and filter out the reflected angle components in the covariance matrix; when
there is no low-elevation target in space or after multipath suppression is completed, DCNN
can effectively achieve 2D DOA estimation with high estimation accuracy and without the
need for further parameter matching.

In the proposed algorithm, the choice of hyperparameters for the model is not strict
and needs to be optimized and adjusted according to the output results. In addition, we
used simulation data for validation and comparison experiments, and there are certain
differences between the simulation and measured data. The next study will focus on
analyzing and comparing the similarities and differences between the simulation data and
the measured data, so that the simulation data and the experimental scenarios can be set
closer to the actual situation, thus increasing the applicability of the.
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Abstract: Neural network models for hyperspectral images classification are complex and therefore
difficult to deploy directly onto mobile platforms. Neural network model compression methods can
effectively optimize the storage space and inference time of the model while maintaining the accuracy.
Although automated pruning methods can avoid designing pruning rules, they face the problem
of search efficiency when optimizing complex networks. In this paper, a network collaborative
pruning method is proposed for hyperspectral image classification based on evolutionary multi-task
optimization. The proposed method allows classification networks to perform the model pruning task
on multiple hyperspectral images simultaneously. Knowledge (the important local sparse structure of
the network) is automatically searched and updated by using knowledge transfer between different
tasks. The self-adaptive knowledge transfer strategy based on historical information and dormancy
mechanism is designed to avoid possible negative transfer and unnecessary consumption of com-
puting resources. The pruned networks can achieve high classification accuracy on hyperspectral
data with limited labeled samples. Experiments on multiple hyperspectral images show that the
proposed method can effectively realize the compression of the network model and the classification
of hyperspectral images.

Keywords: hyperspectral images classification; network pruning; multi-task optimization; knowledge
transfer; multi-objective optimization

1. Introduction

Hyperspectral images (HSIs) have become an important tool for resource exploration
and environmental monitoring because they contain a lot of spectral segments and extensive
spatial information. By using a convolutional neural network (CNN) [1–4], features of HSIs
were extracted [5] and classified, which greatly improved the classification performance.
Therefore, deep network methods have been widely applied in HSI classification.

However, the powerful feature representation ability of CNN relies on the complex
structure of the model and a large number of parameters. With the development of remote
sensing technology, the resolution is improved, which makes the size of the image larger,
and such data size significantly influences the computational and storage requirements [6,7].
This hinders the application of networks to satellites, aircraft, or other mobile platforms,
which greatly reduces the practical efficiency of remote sensing images. Therefore, reducing
the complexity of deep network models is an enduring problem for deploying on limited
resource devices [8]. Neural network model compression can be used to solve the problem.

Neural network pruning is regarded as a simple yet efficient technique to compress
model while maintaining their performance [9], which makes it possible to deploy the
remote sensing lightweight analysis model on hardware. Generally speaking, network
pruning methods can be classified as manual and automatic pruning methods. Pruning
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rules and selection of solutions in traditional manual methods are designed by domain
experts. LeCun [10] first proposed optimal brain damage (OBD), which removed the
low-value parameters by calculating the second derivative of parameters and sorting them.
Han et al. [11] used an iterative pruning method to prune the weights that were less
than a manually preset layer threshold. Lee et al. [12] proposed an importance score for
global pruning; the score was a rescaling of weight magnitude that incorporates the model-
level distortion incurred by pruning, and did not require any hyperparameter tuning.
Recent advances in neural tangent kernel (NTK) theory have suggested that the training
dynamics of sufficiently large neural networks was closely related to the spectrum of the
NTK. Motivated by this finding, Wang et al. [13] pruned the connections that had the
least influence on the spectrum of the NTK. The pruning method was applied to remote
sensing images. Qi et al. [14] used the original network as a teacher model and guided
the model to pruning through loss. Wang et al. [15] pruned according to the scaling factor
of the BatchNorm layer. Guo et al. [16] designed a sensitivity function to evaluate the
pruning effect of channels in each layer. Furthermore, the pruning rate of each layer was
adaptively corrected. It is important to note that the criteria of manual pruning methods
are not uniform, such as the absolute value of the network weights, the activation value
of the neurons, and so on. As a result, a lot of time and labor costs are required to design
and select appropriate pruning criteria for different networks. Furthermore, the sparse
network obtained by manual pruning is generally not optimal due to the limited exploration
space [17].

Different from the traditional manual pruning methods, automatic pruning meth-
ods can reduce the design cost [18]. As an automatic pruning method, evolution-based
pruning methods constructed the pruning of the network as an optimization task, which
can find and retain better sparse network structure in discrete space. Zhou et al. [19]
implemented pruning of medical image segmentation CNNS by encoding filter and skip-
ping some sensitive layers. By considering the sensitivity of each layer, our previous
work proposed a differential evolutionary pruning method based on layer-wise weight
pruning (DENNC) [20]. In addition, a multi-objective pruning method (MONNP) [21]
was proposed, which can balance the network accuracy and network complexity at the
same time. Furthermore, MONNP generated different sparse networks to meet various
hardware constraints and requirements more efficiently. Zhou et al. [22] searched sparse
networks at the knee point on Pareto-optimal front, and the networks create a trade-off
between accuracy and sparsity. Zhao et al. [23] compressed the model with a pruning
filter and applied the multi-objective optimization of CNN model compression to remote
sensing images. Wei et al. [24] proposed a channel pruning method based on differentiable
neural architecture search to automatically prune CNN models. The importance of each
channel was measured by a trainable score. In conclusion, evolutionary pruning methods
reduce the cost of manually designing pruning rules; however, network structures designed
for hyperspectral data are becoming more and more complex, which also causes certain
difficulties in evolutionary pruning methods.

For cases where the task is difficult to optimize, introducing additional knowledge
to facilitate the search process of the target task provides feasible ideas. Ma et al. [25]
proposed a multi-task model ESMM, which contains a main task CVR (post-click conversion
rate) prediction, and an auxiliary task CTCVR (post-view click-through conversion rate)
prediction. The CTCVR task was used to help the learning of CVR to avoid problems such
as over-fitting and poor generalization of CVR prediction due to small samples. Ruder [26]
pointed out that in multi-task learning, by constructing additional tasks, the prompts of
these tasks can promote the learning of the main task. Feng et al. [27] considered the
random embedding space as additional task for the target problem, which ensured the
effectiveness of the search on the target problem by simultaneously optimizing the original
task and the embedding task. Evolutionary multitasking can be used to optimize multiple
tasks simultaneously to achieve the promotion of their respective tasks. In evolutionary
multi-task optimization, effective facilitation between tasks relies on task similarity.
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In HSI classification, if there exists different HSIs from the same sensor, the spectral
information has a similar physical meaning (radiance or reflectivity) [28,29], and the simi-
larity between two images is high. As shown in Figure 1, the HSIs obtained by the same
sensor had the same spectral range. The comparison of spectral curves of the Indian Pines
and Salinas reflected the similarity between HSIs. If the ground features of different HSIs
are close, there is an underlying similarity between them. When the same network is
trained on similar data, the distribution of network parameters is close. Thus, there are also
similarities between structural sparsification tasks on different datasets. When dealing with
HSI, deep neural networks mainly learn the spectral characteristics of the data through the
convolution layer, and the parameters of the convolution layers realize the feature extrac-
tion of the data. Therefore, the structural information of the neural network is regarded
as the transferred knowledge, which can be used as prior knowledge for other parallel
tasks. In addition, the labels of hyperspectral data are limited, and CNN need enough data
to learn features, which affects the training process of neural networks. When distribu-
tion of network parameter is close, knowledge transfer can obtain useful representation
information from other image to alleviate the problem of limited labeled samples.

Figure 1. Spectral curves of Indian Pines and Salinas under AVIRIS.

In this paper, a network collaborative pruning method is proposed for HSI classifica-
tion based on evolutionary multi-task optimization. The main contributions of this paper
are as follows:

• A multi-task pruning algorithm: by exploiting the similarity between HSIs, different
HSI classification networks can be pruned simultaneously. Through parallel optimiza-
tion, the optimization efficiency of each task can be improved. The pruned networks
can be applied to the classification of limited labeled sample HSIs.

• Model pruning based on evolutionary multi-objective optimization: the potential
excellent sparse networks are searched by an evolutionary algorithm. Multi-objective
optimization optimizes the sparsity and accuracy of the networks at the same time,
and can obtain a set of sparse networks to meet different requirements.

• To ensure effective knowledge transfer, the network sparse structure is the transfer of
knowledge, using knowledge transfer between multiple tasks to achieve the knowl-
edge of the search and update. A self-adaptive knowledge transfer strategy based on
the historical information of task and dormancy mechanism is proposed to effectively
prevent negative transfer.
The rest of this paper is organized as follows. Section 2 reviews the background.
The motivation of the proposed method is also introduced. Section 3 describes the
model compression methods for HSI classification in detail. Section 4 presents the
experimental study. Section 5 presents the conclusions of this paper.

2. Background and Motivation

2.1. HSI Classification Methods

Classification methods based on deep neural networks utilize its strong representation
learning ability in the image field to automatically construct a representation structure
that extracts spectral and spatial features and realize the classification of pixels. The HSI
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classification methods based on deep learning require data preprocessing and construction
of the neural network structure before finally classifying the data [30], as shown in Figure 2.
In recent years, the commonly used deep learning network models have included stacked
autoencoder (SAE) [31], recurrent neural network (RNN) [32], convolutional neural network
(CNN) [5], and graph convolutional network (GCN) [33–35]. Hamida [36] proposed a 3D-
DL approach that enables joint spectral and spatial information processing. The 3D-DL
method combines the traditional CNN network with the application of 3D convolution
operations instead of using 1D convolution operators that only inspect the spectral content
of the data. The deep CNN with a large parameter scale has stronger nonlinearity, which
leads to high complexity and calculation of the neural network. If trained on limited
labeled samples, a neural network is overparameterized with respect to the limited training
samples, which causes the CNN to tend to overfit, so a large number of training samples
was needed to improve the generalization ability of the model and alleviate overfitting in
the case of limited samples.

Figure 2. HSI classification based on neural networks.

A lightweight model can alleviate the requirement for the number of labeled samples.
Simplification methods of the model are mainly divided into model compression and
lightweight model design. Li et al. [37] proposed a compression network considering
the high dimensionality of HSI. A fast and compact 3-D-CNN with few parameters was
developed in [38]. Some efficient convolution operations have been explored to reduce the
number of network parameters. Lightweight model design still requires prior knowledge
to design the network structure. In the model compression method, this mainly includes
network parameter quantization, neural network pruning, knowledge distillation, and
tensor decomposition methods. Cao et al. [39] proposed a compressed neural network-
based HSI classification method that uses a large teacher network to guide the training of a
small student network, thereby achieving similar performance to the teacher network under
the premise of low complexity. Compared with other model compression methods, neural
network pruning is efficient and simple and has strong generalization. It can compress the
network model and prevent the network from overfitting.

2.2. Neural Network Pruning

Neural network pruning is a classic technique in the model compression filed. As
shown in Figure 3, network pruning requires a trained network, which is usually over-
parameterized. For a network N of depth L, the overall parameters contained can be
obtained by W =

{
w1, . . . , wL

}
, where wi denotes the parameter matrix of the i-th layer of

the network.
Neural network pruning is usually achieved by pruning mask M =

{
m1, . . . , mL

}
[40].

mi represents the pruning mask of each layer of the network, which is usually represented
by a binary matrix with the same dimension as wi. Specifically, 0 means that the parameter
is pruned and 1 means that the parameter is preserved. The pruned weight wi

prun is
obtained by performing a Hadamard product on mi and wi, and it can be expressed as
wi

prun = wi ⊙ mi. The process of neural network pruning is also shown in Figure 3.
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Figure 3. The procedure of neural network pruning.

Finally, the pruned network is fine-tuned. According to the pruning process, it can
be divided into iterative pruning and one-shot pruning, the difference between the two
pruning process is represented in Figure 3. Iterative pruning is a cyclical process of pruning
and retraining, and many successful pruning methods [11,41,42] in the past have been
based on iterative pruning. However, recent research [43,44] has suggested that such heavy
consumption and the selection of design undermine their utility. One-shot pruning is
trained after a one-time pruning process, and it can avoid the problem of iterative pruning.

2.3. Evolutionary Multi-Task Optimization

Evolutionary multi-task optimization (EMTO) [45–49] is an emerging paradigm in
the field of evolutionary computation. By sharing searched knowledge in similar tasks,
EMTO can improve the convergence characteristics and searching efficiency for each
task [50]. As shown in Figure 4, EMTO randomly marks the individuals with different task
cultures and maps them to the corresponding task space for evolving. Furthermore, the
knowledge in each task is transferred by genetic material among individuals in a unified
space. Furthermore, EMTO has been studied to solve similar tasks parallelly [51] and
handling optimization problems efficiently by building module tasks [52–55]. In avoiding
the possible negative transfer of knowledge, Gao et al. [56] reduced the divergence between
subpopulations belonging to different tasks by aligning the distributions in the subspaces.

Figure 4. The overview of evolutionary multi-task optimization.

A minimization EMTO problem with K optimization tasks have a unified space Ω.
The j task, denoted as Tj, is considered to have a search space Ωj on which the objective
function Fj : Ωj → Ω implements a mapping from subsearch space Ωj to uniform space Ω.
In addition, each task may be constrained by several equality and/or inequality conditions
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that must be satisfied for a solution to be considered feasible. EMTO aims to optimize
all tasks:

minimize{F1(x1), · · · , Ft(xt), · · · , Fk(xk)} (1)

In evolutionary multi-task optimization, each individual is assigned a skill factor
indicating the cultural trait of the associated task [51]. Then, the individuals are encoded in a
unified search space and the genetic operators are applied to produce offspring in this space.
The offspring also inherit the parents’ skill factors through the vertical cultural transmission.

2.4. Motivation

Deep neural networks achieve good classification results based on large-scale param-
eters. The complex nonlinear structure leads to complex calculation, which affects the
application of neural network for HSI classification on mobile platforms. Therefore, it is
necessary to compress the model of the existing large-scale network. Moreover, the training
of neural networks relies on a large number of training samples. HSIs need to be manually
labeled, so the labeled samples of HSIs are limited, which will lead to overfitting and
classification difficulties during complex neural network training.

Traditional network pruning methods based on deep neural networks only deal with
one image at a time, which has limited learning knowledge and does not make full use
of the common features between similar images. The multi-task framework can be used
to simultaneously prune the classification networks of multiple different images.Taking
advantage of the potential similarities between optimization tasks, the multi-task frame-
work can be used to simultaneously prune the classification networks of multiple different
images. Using existing HSI with high similarity, when the same network architecture is
trained on different datasets, its parameters characterize different datasets, so interaction
between tasks can alleviate the limited sample problem on a single dataset and help the
classification of the respective task. Although the existing evolutionary pruning methods
can avoid the cost and prior knowledge requirements of designing pruning rules, they
are difficult to optimize when facing more complex network structures. The proposed
multi-task optimization framework, using knowledge transfer between tasks, can also
effectively facilitate the respective optimization tasks.

3. Methodology

This section provides a comprehensive description of the proposed network collabora-
tive pruning method for HSI classification. Firstly, the overall framework of the method is
introduced. Secondly, compression of the model is achieved by an evolutionary multi-task
pruning algorithm, the algorithm is introduced, and the initialization of individual and
population, genetic operators, and self-adaptive knowledge transfer strategy are described
in detail. Finally, the complexity of the proposed method is calculated.

3.1. The Framework of the Proposed Network Collaborative Pruning Method for HSI Classification

The overall framework of the proposed method is shown in Figure 5. First, different
optimization tasks are constructed for two similar HSIs, i.e., there is a similarity between
the two sparsification tasks. The evolutionary algorithm is used to search the potential
excellent sparse network structure on the respective HSI. Genetic operators are designed
according to the representation of the network structure. In the process of the parallel
optimization of two tasks, interaction between tasks is needed to transfer the local sparse
network structure. At the same time, in order to avoid the possible negative transfer,
the self-adaptive knowledge transfer strategy is used to control the interaction strength
between tasks. After completing the pruning search in different tasks and fine-tuning on
the respective HSI, a set of sparse networks is obtained.
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Figure 5. Overall framework of proposed network collaborative pruning method for HSI classification.

3.2. Evolutionary Multi-Task Pruning Algorithm

3.2.1. Mathematical Models of Multi-Tasks

In the evolutionary pruning algorithm, modeling is performed on different HSIs and
the similarity between images is high. Therefore, the models of multi-tasks are given in (2).

{
TI = max( facc(WtaskI), fspar(WtaskI)) WtaskI ∈ Ω

TI I = max( facc(WtaskI I), fspar(WtaskI I)) WtaskI I ∈ Ω
(2)

⎧
⎨
⎩

facc(Wprun) = 1 − eval(Dtest, Wprun)

fspar(W, Wprun) =
‖∑

L
i=1 wi

prun‖l0
|∑L

i=1 wi|
(3)

where TI represents the classification and structure sparsification task on a certain HSI and
the search space of TI is Ω. Furthermore, the optimization of the task is achieved by search-
ing the result pruned network weights WtaskI . Similarly, TI I represents the classification
and structure sparsification task on a different HSI, the search space of TI I is also Ω, and the
pruned network weights obtained by searching is WtaskI I .

Each task is a multi-objective optimization model which can be expressed by (3).
Generally speaking, in the search process, when the network sparsity is reduced, the ac-
curacy of the network will reduce; sparsity and accuracy are two conflicting goals. One
objective function facc represents the accuracy of the neural network on the test dataset
Dtest, and another objective function fspar represents the sparsity of the network, which can
be represented by the pruning rate of the network. Specifically, sparsity can be expressed
as the ratio of the number of all elements that are not zero to the number of all elements.

3.2.2. Overall Framework of Proposed Evolutionary Multi-Task Pruning Algorithm

The evolutionary pruning algorithm is shown in Figure 6. One-dimensional vectors
are designed for different tasks to represent different pruning schemes, which can also
be regarded as a set of sparse networks. In these two optimization tasks, the stepwise
optimization of the network structure within the task is achieved. Through the knowledge
transfer between different tasks, the optimization efficiency of the two tasks is further
improved. After the evolution is completed, a set of network pruning schemes that can
balance accuracy and sparsity are obtained. The specific implementation of the evolutionary
pruning algorithm based on multi-task parallel optimization is shown in Algorithm 1.
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Figure 6. The proposed evolutionary multi-task pruning algorithm.

Algorithm 1 The proposed evolutionary multi-task pruning algorithm

Input: pop: task population size, t: number of evolutionary iterations, P: parent population,
rmp: random mating probability, gen: maximum number of generation

Output: a set of trade-off sparse networks for multiple HSIs
1: Step (1) Train a state-of-the-art network N
2: Step (2) Construct task TI and task TI I in Ω

3: Step (3) Pruning
4: Set t = 1 then initialize the population Pt

5: while (t < gen) do
6: Pt ← Binary Tournament Selection (Pt)
7: Generate offspring Ct → Refer Algorithm 2
8: Rt = Ct ∪ Pt

9: Update scalar fitness in Rt

10: Select pop fittest members from Rt to form Pt+1 by NSGA-II
11: Self-adaptively update rmp → Refer Algorithm 3
12: t = t + 1
13: end while
14: Step (4) Fine-tuning the optimized results in TI and task TI I

3.2.3. Representation and Initialization

In this paper, we adopt a one-dimensional vector to represent a layer-by-layer dif-
ferentiated pruning scheme, which can also represent a unique sparse network. This can
more comprehensively reflect the sensitivity differences of different layers in the neural
network, so as to achieve more refined and differentiated pruning. This encoding method
can be well extended to a variety of networks, only needing to determine the depth of the
network to achieve encoding and pruning. On the other hand, the use of one-dimensional
vector encoding makes the design of genetic operators more convenient. Each element
in the vector represents the weight pruning ratio of each layer of the network, which is
the proportion of 0 elements in the wi matrix. Thus, the encoding vector of layer i can be
represented by the wi as:

vector[i] =
‖wi‖l0
|wi| (4)

Similar to (3),
∥∥wi
∥∥

l0 represents the number of nonzero elements in the layer i, and
∣∣wi
∣∣

represents the number of elements in this layer. In the pruning process, the weights
are sorted from small to large according to the element value of the i-th bit of the one-
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dimensional vector, and the weight of the former vector[i]% is pruned. The upper and lower
bounds of vector[i] are 0 and 1, respectively. In this way, the network weights are pruned
layer by layer, and the sparse network structure corresponding to the one-dimensional
vector can be finally obtained. The search process tries to approach the real Pareto-optimal
front. The decoding operation is the reverse process of the encoding operation.

Specifically, as shown in Figure 7, for a pruning scheme, its i-th element is a and its j-th
element is b. Firstly, the weights of layers i and j are arranged from small to large. Suppose
that pruning a × 100% of the weights in the i-th convolution layer, the total parameter

∣∣wi
∣∣

of this layer is ki
w × ki

h × f i, where ki
h represents the height of the convolution kernel, ki

w

represents the width of the convolution kernel, f i represents the number of convolution
filters in this layer. Suppose that pruning b × 100% of the weights in the j-th fully connected
layer, the total parameter

∣∣wj
∣∣ is the product of the input neurons n

j
in and output neurons

n
j
out. After determining the pruned parameter,the corresponding bit is set to zero to indicate

that the parameter is pruned.

Figure 7. The representation of individual initialization.

According to the depth L of the network and the population size pop, pop one-
dimensional vectors of length L are randomly generated to form the initial population of
task. This represents pop pruning schemes, which can also be regarded as pop different
sparse networks. The population is initialized in the same way for different tasks.

3.2.4. Genetic Operator

The genetic operators used in proposed algorithm include crossover and mutation
operators. It is necessary to judge the skill factor of the individual when two individuals
crossover. This is similar to MFEA [45]. If two randomly selected parent pruning schemes
have the same skill factor, they come from the same task and crossover directly. Otherwise, it
comes from different tasks, and rmp is needed to determine whether to carry out knowledge
transfer between tasks. After completing the crossover operation, the individual performs
the mutation operation. The generated offspring individuals inherit the skill factor of the
parent individual. If within-task crossover is performed, the skill factor of the offspring is
the same as that of the parents, otherwise, the offspring randomly inherits the skill factor
of one parent. The details are shown in Algorithm 2.
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Algorithm 2 Genetic operations

Input: p1, p2: candidate parent individuals, τi: the skill factor of the parent, rmp: random
mating probability, rand: a random number between 0 and 1

Output: offspring individual c1, c2
1: if τ1 == τ2 then or rand < rmp
2: c1, c2 ← Crossover(p1, p2)
3: for i select f rom{1, 2} do
4: ci ← Mutate(pi)
5: end for
6: if τ1 == τ2 then
7: ci inherits the skill factor from pi

8: else
9: if rand < 0.5 then

10: c1, c2 inherits τ1 from p1
11: else
12: c1, c2 inherits τ2 from p2
13: end if
14: end if
15: else
16: for i select f rom{1, 2} do
17: ci ← Mutate(pi)
18: ci inherits the skill factor from pi

19: end for
20: end if

Both between-task and within-task crossover operators are designed in the same single-
point crossover. The i-th value in vector of parents p1 and p2 are swapped to generate two
new individuals c1 and c2. As shown in Figure 8, when individuals crossover at a certain
bit, the bit on different individual vectors is swapped directly. Because pruning rate and
sparse structure correspond one-to-one, it is also directly exchanged at the weight matrix
of the network.

Figure 8. The illustration of crossover operator.

A polynomial-mutation [57] is designed when the crossover operation is complete.
Figure 9 depicts the mechanism of the designed mutation operator. Taking individual p1
for example, the i-th value changes as preset mutate probability from 0 to 0.25, which can
be calculated from the polynomial mutation in Figure 9. The change quantity βi in layer
i is related to the ui ∈ [0, 1) and the non-negative real number ηu. ηu is the distribution
exponent. The larger this value is, the more similar the offspring and the parent are, so
ηu = 10 is set as the mutation probability. There are four input neurons and three output
neurons in this layer for a total of 12 weight parameters. During pruning, the weights are
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sorted, then select the weight from small to large for pruning, and the sparse structure
obtained after mutation operation is unique. Therefore, a total of three bits in the matrix
need to be changed.

Figure 9. Illustration of mutation operator.

The crossover and mutation operators adopted in this paper not only realize the self-
evolution within tasks but also transfer the effective sparse structure so as to promote the
search efficiency of two tasks.

3.2.5. Self-adaptive Knowledge Transfer Strategy

Although there is a high similarity between the two tasks [58], negative transfer is
still inevitable; this affects the search efficiency and solution quality. So, a self-adaptive
knowledge transfer strategy based on historical information and a dormancy mechanism
is designed. The intensity of transfer can be adjusted adaptively by taking advantage
of individual contributions. The dormancy mechanism is used to suppress irrelevant
knowledge transfer, reduce the interference of useless knowledge to task search, and save
computing resources.

Algorithm 3 introduces the self-adaptive knowledge transfer strategy. New individ-
uals generated by knowledge transfer between tasks are labeled as {ptki|i = 1, 2, . . . , n}.
After the fitness evaluation of the generated offspring, the Pareto rank of the offspring
individual in the non-dominated ranking is obtained. The knowledge transfer contribution
TKCR can then be represented by the rank of the individual with the best non-dominated
rank result among these newly generated individuals. Then, TKCR controls the value of
rmp. Notice that when comparing the Pareto rank of the offspring, the task to which the
offspring belongs is not distinguished.

Algorithm 3 Self-adaptive knowledge transfer strategy

Input: Np1, Np2: the population size in multi tasks, rankmin: minimum rank of non-
dominated sort, ptki: new individuals generated by knowledge transfer, ǫ: preset
threshold

Output: random mating probability rmp
1: rankmin ← minrank(ptk1, ptk2, . . . , ptkm)
2: δ ← rankmin/(Np1 + Np2)
3: Transfer knowledge contribution TKCR ←1 − δ
4: if TKCR > ǫ then
5: rmp ← TKCR
6: else
7: rmp ← 0.1
8: end if

When the value of TKCR is less than the set threshold ǫ of population interaction,
the dormancy condition of the population is reached, and rmp is set to a small fixed value.
When the value of TKCR is greater than ǫ, the transfer of useful knowledge is detected at
this time, the self-adaptive update is resumed, and then, the value of rmp is the value of
TKCR. Through the self-adaptive strategy to control the frequency of knowledge transfer
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in the evolution process and the dormancy mechanism, the impact of negative transfer
between tasks on task performance can be effectively avoided.

3.3. Fine-Tune Pruned Neural Networks

After pruning, a set of sparse networks is obtained. Then, they are retrained, as studied
in [59]. In detail, these networks are trained with the Adam optimizer, and the initial
learning rate, weight decay, and training epochs are set differently according to different
data. The learning rate is adjusted by cosine annealing with the default setting.

3.4. Computational Complexity of Proposed Method

An analysis of the computational complexity of the proposed method is calculated
in two parts: the computational cost of evolutionary computation and the computational
cost of fine-tuning. In the pruning parts, the computational complexity is O(GPC), where
G is the number of generations, P is the number of individuals, and C is the cost of given
function. Assuming the computational cost of training for each epoch is O(T), the fine-
tuning computational complexity is O(ET), E denotes the number of training epochs.
Therefore, the computational complexity of the proposed approach is O(GPC + PTE).
Because the proposed method is multi-task optimization and is able to handle two HSIs
pruning tasks simultaneously, it is twice the computational complexity of a single evolution
and fine-tuning process.

4. Experiments

In this part, experiments that are carried out on HSIs to verify the effectiveness of
the proposed method are described. Firstly, it is verified that the pruned network has
better classification accuracy with limited labeled samples on multiple HSIs. The proposed
method is compared with other neural network pruning methods, and the relevant pa-
rameters of the pruned network are compared with other methods. After that, the sparse
networks obtained on the Pareto-optimal front are compared to prove the effectiveness of
the multi-objective optimization. The effectiveness of the proposed self-adaptive knowl-
edge transfer strategy is proven by quantifying the knowledge transfer between tasks.
Finally, the proposed method is validated on more complex networks and larger HSI.

4.1. Experimental Setting

A 3DCNN [36] trained on the HSI was used to validate proposed method. The struc-
ture of network is composed of convolutional layers of different stride. The convolutional
layer with stride 1 is called Conv, and the convolutional layer with stride 2 is called Con-
vPool. Excluding the classification layer, the number in the network structure is the number
of the filter of the convolutional layer, and the network structure can be expressed as:
3DConv(20)-1DConvPool(2)- 3DConv(35)- 1DConvPool(2)-3DConv(35)- 1DConvPool(2)-
3DConv(35)-1DConvPool(35)-1DConv(35)-1DconvPool(35).

HSIs use Indian Pines, Salinas, and University of Pavia datasets. Data in the real world
not only have the problem of limited labeled samples, but also the labeled samples often
cannot reflect the real distribution of the data. For example, only part of the HSI in a certain
area of the ground are sampled in the detection, and these data are continuous but may not
be comprehensive. In order to simulate limited sample data, 10% labeled samples were set
for each dataset, and the sample of the corresponding comparison methods was also 10%.

The Indian Pines (IP) dataset is collected by the sensor AVIRIS [60] from a pine forest
test site in northwest India. Its wavelength range is 400–2500 nm. After removing the water
absorption area, there are 200 spectral segments in total, and the spatial image size of each
spectral segment is 145 × 145, with a total of 16 types of labels. The spatial resolution of
this dataset is only 20 m. Figure 10 shows the pseudo-color plots and labels of Indian Pines.
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Figure 10. The false-color image and reference image on Indian Pines dataset.

The Salinas (SA) dataset is collected from the Salinas Valley in California by the sensor
AVIRIS. After removing the water absorption area, there are a total of 200 spectral segments,
and the spatial image size of each spectral segment is 521 × 217, with a total of 16 labels.
The spatial resolution of this dataset is 3.7 m. Figure 11 show the pseudo-color plots and
labels of Salinas.
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Figure 11. The false-color image and reference image on Salinas dataset.

The University of Pavia (PU) dataset is collected by the sensor ROSIS near the Univer-
sity of Pavia, Italy. After removing the water absorption area, there are a total of 103 spectral
segments, and the spatial image size of each spectral segment is 610 × 340, with a total of
nine categories of labels. The spatial resolution of this dataset is 1.3 m. Figure 12 shows the
pseudo-color plot and labels of the University of Pavia.

Figure 12. The false-color image and reference image on University of Pavia dataset.

The proposed method was compared with five deep learning methods, including
1DCNN [61], 3DCNN [62], M3DCNN [63], DCCN [64],HybridSN [65], ResNet [66],
and DPRN [67]. In the experiment, three evaluation metrics—overall accuracy (OA),
average accuracy (AA), and Kappa coefficient (κ)—were used to evaluate the classification
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effect of the proposed method. The parameters of our proposed method are shown in
Table 1.

Table 1. Parameters used in proposed method.

HSI Datasets

Offspring size in pruning task I 50

Offspring size in pruning task II 50

Maximum number of generation 50

Mutation probability 10

Crossover probability 10

The initial value of transfer 0.5

The dormancy condition 0.1

The experimental server included four Intel(R) Xeon(R) Silver 4214R cpus @ 2.40 GHz,
192 GB DDR4 RAM, Two NVIDIA Tesla K40 12 GB Gpus and eight NVIDIA Tesla v1000s
Gpus were used. The software environment used the Ubuntu operating system with
Pytorch framework and Python 3.6 as the programming language. The optimizer of
the convolutional neural network was set to Adam optimizer, the weight decay was 0,
betas = (0.9, 0.999), and eps = 1 × 10−8. The initial learning rate was 1 × 10−4, the learning
rate decay was adopted by cosine annealing, the number of training epochs of the network
was 200, and the batch size was 100.

4.2. Results on HSIs

4.2.1. Classification Results

In the experiment, two groups of experiments were constructed to analyze the influ-
ence on the performance of the proposed method. The first group uses the Indian Pines
dataset and the Salinas dataset, and the second group uses the University of Pavia dataset
and the Salinas dataset. The Indian Pines dataset and Salinas dataset are from the same
sensor, and the University of Pavia dataset and Salinas dataset are from different sensors.

The classification result of the Indian Pines dataset is shown in Figure 13, and the
specific classification result table is shown in Table 2. Although the pruned network do not
obtain the best results on the three evaluation metrics, it obtain the highest classification
accuracy on the seven categories, all of which are 100%. The network for Indian pines
dataset is able to prune 91.2% of the parameters.

From the overall evaluation metrics, it can be seen that when the Indian Pines dataset
from the same sensor is used as an another task, it obtains relatively better results, and prun-
ing 87.2% of the network weights. By transferring the existing knowledge, the method
successfully improves the classification accuracy of the network and greatly reduces the
complexity of the network model. It is basically superior to other deep learning methods in
the OA and AA. Although the number of samples in each category of data is not balanced,
the knowledge transfer can improve the overall performance of the sparse network, so that
the network still achieves a high κ, that is, the distribution of classification accuracy on
each category is balanced.

The classification result of the University of Pavia dataset is shown in Figure 13, and the
specific classification results are shown in Table 3. It can be seen that although 83.1% of
the parameters are pruned, the pruned network still obtains high OA, AA, and κ values,
which are 97.57%, 97.84%, and 96.79%, respectively. In addition to this, the best results are
achieved in three categories. This proves that leveraging the knowledge transferred from
other images can facilitate the training of the network on the current image.

121



Remote Sens. 2023, 15, 3084

Table 2. Classification accuracy (%) for the collaborative pruning task (Indian Pines and Salinas).
Best results are reported in bold.

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 87.15%

OA (%) 91.78 ± 1.45 92.05 ± 1.37 90.51 ± 0.98 95.66 ± 2.06 91.68 ± 1.71 93.68 ± 1.03 97.14 ± 0.77 95.70 ± 1.31
AA (%) 96.13 ± 2.33 95.50 ± 2.67 95.41 ± 2.56 98.05 ± 0.42 96.10 ± 2.11 97.46 ± 1.68 98.59 ± 1.09 98.14 ± 0.69

Kappa (%) 90.87 ± 2.06 91.13 ± 2.01 89.45 ± 2.79 95.17 ± 1.78 90.77 ± 2.21 92.99 ± 1.51 96.10 ± 0.68 95.14 ± 0.74

1 99.95 99.90 99.70 98.45 98.35 99.75 99.10 99.70
2 99.59 99.81 99.27 99.78 99.81 100.00 99.88 100.00
3 98.93 86.33 97.36 99.84 98.27 99.39 100.00 99.24
4 99.78 99.92 99.28 98.78 99.71 99.85 99.03 99.07
5 98.39 98.99 99.62 100.00 96.34 98.80 99.49 99.03
6 99.99 99.99 99.98 99.99 99.99 100.00 100.00 99.97
7 99.52 99.30 99.46 99.94 99.49 99.97 99.81 99.47
8 80.09 88.59 77.82 85.04 76.69 78.79 93.17 88.31
9 99.06 99.64 98.37 99.91 98.59 99.48 99.82 99.77
10 90.69 95.21 91.03 96.06 93.47 97.98 98.42 98.26
11 99.06 99.90 99.25 99.06 98.68 99.06 100.00 99.34
12 99.01 97.76 99.01 100.00 98.96 99.89 99.71 99.95
13 99.34 99.45 99.23 99.01 98.79 100.00 100.00 100.00
14 99.06 97.38 97.75 99.34 98.69 98.31 99.55 100.00
15 77.06 66.82 72.45 94.04 81.89 88.44 89.32 88.37
16 98.61 99.00 96.90 99.50 99.88 99.61 99.74 99.89

Category 1DCNN 3DDL M3DCNN DCNN HybridSN ResNet DPRN Pruned 91.27%

OA (%) 80.93 ± 4.37 91.45 ± 3.62 95.18 ± 3.74 92.17 ± 3.79 95.38 ± 2.91 93.24 ± 2.86 97.46 ± 1.50 88.90 ± 1.27
AA (%) 90.15 ± 3.77 96.84 ± 2.81 98.07 ± 1.72 93.45 ± 2.26 98.12 ± 0.58 97.89 ± 1.43 98.05 ± 0.49 95.38 ± 0.81

Kappa (%) 78.38 ± 4.69 90.33 ± 2.84 94.52 ± 2.94 91.11 ± 3.19 94.75 ± 1.67 93.11 ± 2.48 95.97 ± 1.39 87.46 ± 0.93

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 65.68 96.42 93.20 82.56 89.28 91.75 96.68 76.96
3 73.97 96.14 97.34 91.20 97.22 96.26 98.23 95.66
4 100.00 100.00 100.00 95.78 100.00 100.00 100.00 100.00
5 96.48 100.00 100.00 96.27 99.17 100.00 100.00 99.37
6 99.31 99.86 99.45 98.63 99.86 100.00 100.00 98.35
7 100.00 100.00 100.00 92.86 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
9 100.00 100.00 100.00 90.00 100.00 100.00 100.00 100.00

10 64.19 88.58 93.10 91.67 100.00 93.18 97.48 91.15
11 72.66 73.28 88.55 91.57 97.42 81.92 93.74 76.65
12 75.71 97.97 98.65 86.34 90.17 97.95 99.03 92.91
13 100.00 100.00 100.00 100.00 98.14 100.00 100.00 100.00
14 95.25 99.84 98.81 97.00 100.00 98.37 99.28 95.81
15 99.22 97.40 100.00 95.34 98.89 100.00 100.00 99.22
16 100.00 100.00 100.00 86.02 99.74 100.00 100.00 100.00

Sub-optimal results were obtained on the different sensor University of Pavia dataset,
which still has certain advantages compared with other deep learning methods. Using the
University of Pavia dataset as another task, 84.3% of network parameters were pruned.
Compared with the results on the Indian Pines dataset, the number of retained parameters
is greater, and the classification performance and consistency are lower.

These two groups of experiments show that the search efficiency of task can be
promoted by transferring the important sparse structure of the SOTA network from the
another task. In view of the differences between the two groups of experiments due to
the same physical imaging logic under the same sensor device the similarity between the
datasets is higher, and the spectral features are more common, so the better results can
be achieved. Due to the lack of labeled training samples and the high complexity of the
network model, the parameters are too large, so the evaluation metrics of the unpruned
neural network is low, which reflects the limitation of the lack of labeled samples on the
network training.
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Table 3. Classification accuracy (%) for the collaborative pruning task (University of Pavia and
Salinas). Best result are reported in bold.

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 84.30%

OA (%) 91.78 ± 1.45 92.05 ± 1.37 90.51 ± 0.98 95.66 ± 2.06 91.68 ± 1.71 93.68 ± 1.03 97.14 ± 0.77 95.02 ± 0.98
AA (%) 96.13 ± 2.33 95.50 ± 2.67 95.41 ± 2.56 98.05 ± 0.42 96.10 ± 2.11 97.46 ± 1.68 98.59 ± 1.09 98.03 ± 0.30

Kappa (%) 90.87 ± 2.06 91.13 ± 2.01 89.45 ± 2.79 95.17 ± 1.78 90.77 ± 2.21 92.99 ± 1.51 96.10 ± 0.68 94.03 ± 1.12

1 99.95 99.90 99.70 98.45 98.35 99.75 99.10 99.60
2 99.59 99.81 99.27 99.78 99.81 100.00 99.88 99.97
3 98.93 86.33 97.36 99.84 98.27 99.39 100.00 99.60
4 99.78 99.92 99.28 98.78 99.71 99.85 99.03 99.28
5 98.39 98.99 99.62 100.00 96.34 98.80 99.49 99.44
6 99.99 99.99 99.98 99.99 99.99 100.00 100.00 99.97
7 99.52 99.30 99.46 99.94 99.49 99.97 99.81 99.66
8 80.09 88.59 77.82 85.04 76.69 78.79 93.17 84.86
9 99.06 99.64 98.37 99.91 98.59 99.48 99.82 99.97

10 90.69 95.21 91.03 96.06 93.47 97.98 98.42 98.14
11 99.06 99.90 99.25 99.06 98.68 99.06 100.00 100.00
12 99.01 97.76 99.01 100.00 98.96 99.89 99.71 99.95
13 99.34 99.45 99.23 99.01 98.79 100.00 100.00 100.00
14 99.06 97.38 97.75 99.34 98.69 98.31 99.55 99.91
15 77.06 66.82 72.45 94.04 81.89 88.44 89.32 88.06
16 98.61 99.00 96.90 99.50 99.88 99.61 99.74 100.00

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 83.14%

OA (%) 88.32 ± 3.76 81.67 ± 3.17 94.36 ± 1.43 97.43 ± 1.12 93.47 ± 1.69 97.72 ± 1.19 98.48 ± 0.86 97.57 ± 1.40
AA (%) 91.29 ± 2.86 85.11 ± 3.84 94.87 ± 2.77 96.12 ± 2.01 94.81 ± 2.17 97.14 ± 1.28 98.36 ± 0.92 97.84 ± 0.95

Kappa (%) 84.85 ± 3.21 76.24 ± 3.65 92.59 ± 1.79 96.60 ± 2.24 91.46 ± 2.60 96.91 ± 1.28 97.19 ± 1.06 96.79 ± 0.69

1 83.47 69.91 85.03 95.53 86.98 92.35 94.12 95.58
2 87.08 82.99 96.24 99.52 93.71 98.92 99.48 98.14
3 88.42 74.08 89.09 88.61 88.58 95.41 96.86 96.95
4 96.57 94.48 96.34 96.01 96.96 96.99 97.94 97.74
5 99.99 99.95 99.99 100.00 99.99 100.00 100.00 99.77
6 91.05 72.51 98.03 98.01 97.43 99.97 99.63 98.60
7 91.42 83.75 95.78 97.66 96.76 98.84 99.60 99.92
8 84.46 90.82 94.16 95.54 93.18 97.48 94.41 95.05
9 99.15 97.57 99.15 94.19 99.47 99.62 99.52 98.83

(a) 1DCNN (b) 3DDL (c) M3DCNN (d) DCNN (e) H-SN (f) ResNet (g) DPRN (h) P91%

(i) 1DCNN (j) 3DDL (k) M3DCNN (l) DCCN (m) H-SN (n) ResNet (o) DPRN (p) P83%

(q) 1DCNN (r) 3DDL (s) M3DCNN (t) DCCN (u) H-SN (v) ResNet (w) DPRN (x) P87% (y) P84%

Figure 13. Classification maps on Indian Pines, Salinas and University of Pavia. Where P represents
Pruned Network.
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4.2.2. Comparison with other Neural Network Pruning Methods

The proposed method was compared to three neural network pruning methods in
Table 4. NCPM is the network collaborative pruning method proposed in this paper.
Because NCPM is a multi-objective optimization method, it selects a sparse network on the
Pareto-optimal front.

The first pruning method L2Norm [68] is based on L2 norm, which sets a threshold for
pruning for each layer by comparing the weight value of network parameters in each layer.
In addition, NCPM is compared with MOPSO [21], a method based on particle swarm
optimization. LAMP [12] is an iterative pruning method. LAMP utilizes a layer-adaptive
global pruning importance score for pruning.

The three comparison methods and the proposed method all use the 3D-DL network.
The original three pruning methods are all proposed based on 2DCNN and are suitable
for image classification datasets, such as MNIST and CIFAR10. Therefore, the original
pruning method needs to be changed to the pruning of 3DCNN. When training the network
model, the same experimental settings such as the optimizer and learning rate are used as
in NCPM.

Table 4. Classification results of the networks obtained by different pruning methods on the
three HSIs. Best result are reported in bold.

HSI Method L2Norm MOPSO LAMP NCPM

Salinas

Pruned (%) 87.00 85.24 87.00 87.15
OA (%) 86.66 90.40 94.28 95.02
AA (%) 91.48 94.65 97.68 98.03

Kappa (%) 85.24 89.31 93.64 94.03

Indian Pines

Pruned (%) 91.00 90.23 91.00 91.27
OA (%) 66.49 72.68 89.31 88.90
AA (%) 81.44 84.61 94.90 95.38

Kappa (%) 62.52 69.23 87.90 87.46

University of Pavia

Pruned (%) 83.00 84.11 83.00 83.14
OA (%) 87.03 90.67 96.86 97.57
AA (%) 87.4 87.70 97.54 97.84

Kappa (%) 83.1 87.51 95.87 96.79

NCPM obtains the best pruning results on Salinas and University of Pavia, and the
OA of the pruned network is much better than that of L2Norm and MOPSO with the same
pruning rate. The pruned network on Indian Pines is highly similar to the LAMP method,
but both are better than L2Norm and MOPSO.

From the three HSIs, it can be clearly seen that the sparse network searched by
the L2Norm is sub-optimal due to the single redundancy evaluation criterion, and the
evolutionary pruning method can search a better sparse network structure. Due to the lack
of diversity in selecting solutions, the sparse network searched by MOPSO is inferior to the
NCPM method. The LAMP method is an iterative pruning method, and it will be retrained
in an iteration process, which will cause additional computational complexity.

Compared with other pruning methods, NCPM can simultaneously prune two hyper-
spectral data classification networks, which improves the search efficiency. At the same
time, the multi-objective optimization of the sparsity and accuracy of the network structure
can obtain a set of sparse networks after one run.

4.2.3. Complexity Results of the Pruned Network

Table 5 shows the comparison results between the pruned network and the original
network, as well as other neural networks, where the training time refers to a training
time of 200 epochs. Our method is able to prune the 3D-DL network, and when compared
with the original network, 3D-DL, the pruned network can cut most of the parameters
and can also accelerate the test time of the network in a certain range. On the Univeristy of
Pavia dataset, the training time was reduced by 18.23%, on the Salinas dataset, the training
time was reduced by 4.18%, and on the Indian Pines, the time was almost unchanged.
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The pruned network achieves the best results when compared to other methods the Indian
Pines and University of Pavia datasets. The comparison experiment proves the significance
and necessity of neural network pruning.

Table 5. Comparison results of the complexity of the pruned network.

HSIs Methods 1DCNN M3DCNN HybridSN ResNet 3DDL Pruned

Indian pines
EpochTrainTime/s 40.5771 49.8241 73.0636 67.3195 60.1175 60.4814

Parameter 246,409 263,584 534,656 414,333 259,864 22,868
OA (%) 80.93 95.18 95.38 93.24 91.45 88.90

Pavia University
EpochTrainTime/s 40.3595 43.3423 79.7415 56.5454 41.6149 34.0278

Parameter 246,409 263,584 534,656 534,656 259,864 43,918
OA (%) 88.32 94.36 93.47 97.50 81.67 95.02

Salinas
EpochTrainTime/s 64.9641 85.6064 173.6447 134.5664 68.5989 65.7300

Parameter 246,409 263,584 534,656 534,656 259,864 33,262
OA (%) 91.78 90.51 91.68 93.68 92.05 95.70

4.2.4. The Result of the Sparse Networks Obtained by Multi-Objective Optimization

Figure 14 represents the Pareto-optimal front without fine-tuning in both two exper-
iments. The Pareto-optimal front obtained for the Indian Pines dataset is uniformly dis-
tributed, whereas the Pareto-optimal front obtained for the University of Pavia is sparsely
distributed. For the comparison of the Salinas dataset Pareto-optimal front in different
experiments, the diversity of solutions is better in the multi-task optimization experiment
of the Indian Pines dataset with the same sensor.

Figure 14. The Pareto-optimal front without fine-tuning after completing evolutionary search on two
groups experiments.

The hypervolume curve Figure 15 is used to represent the convergence of the evolu-
tionary search process. The hypervolume of each generation is determined by the sparse
network on the Pareto-optimal front, and the diversity and quality of the sparse network
affect the hypervolume. The initialization of the two experiments is random, so the initial
hv is different. By comparing the results on the Salinas dataset in different experiments, it
can be seen that the Salinas hypervolume curve optimized by the Indian Pines multi-task
optimization converges faster and improves more, which again verifies the influence of the
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similarity between tasks on the results of multi-task optimization. In addition, the growth
trend of the hvscore is the same in the two sets of experiments, and the period of faster
growth of hvscore coincides, which can be understood as the promotion effect of knowledge
transfer between the two tasks for their respective tasks.

Figure 15. Hypervolume curves of the evolutionary process on two groups experiments.

Four networks on the Indian Pines dataset were selected for comparison with the
original unpruned network in Table 6. We can see that although about 80–90% of the pa-
rameters were pruned, after fine-tuning, the total accuracy was about 3% different from the
original network. In some categories, such as classes 1, 4, and 7, the classification accuracy
can be basically guaranteed to be 100%. Through multi-objective optimization, a set of
sparse network structures can be obtained after one run, which have different sparsity and
accuracy, and are suitable for different application conditions and application scenarios.

Table 6. Results after fine-tuning sparse networks on the Pareto-optimal front on collaborative
pruning task (Indian Pines and Salinas). Best results are reported in bold.

Category ORG Pruned Networks in Salinas Category ORG Pruned Networks in Indian Pines

Pruned (%) 0.00 84.09 87.15 92.93 96.49 97.21 Pruned (%) 0.00 83.66 84.00 84.86 91.27
OA (%) 92.05 95.25 95.70 95.42 95.51 95.42 OA (%) 91.45 89.75 89.87 89.64 88.90

KAPPA (%) 91.13 94.72 95.22 94.90 95.01 94.90 KAPPA (%) 90.33 88.39 88.52 88.29 87.46
AA (%) 95.50 97.97 98.14 97.96 97.98 97.83 AA (%) 96.84 95.02 94.85 95.02 95.38

1 99.90 99.55 99.70 100.00 99.65 99.65 1 100.00 100.00 100.00 100.00 100.00
2 99.81 99.75 100.00 100.00 100.00 99.86 2 96.42 88.16 79.20 83.89 76.96
3 86.33 99.24 99.24 98.83 99.03 98.07 3 96.14 91.20 95.54 89.75 95.66
4 99.92 99.56 99.06 98.42 99.42 98.63 4 100.00 100.00 97.46 97.46 100.00
5 98.99 98.84 99.02 98.73 99.25 98.31 5 100.00 96.48 94.61 93.78 99.37
6 99.99 99.94 99.97 99.97 99.97 100.00 6 99.86 98.63 96.71 98.08 98.35
7 99.30 98.60 99.46 99.66 99.86 99.46 7 100.00 100.00 100.00 100.00 100.00
8 88.59 86.65 88.30 87.96 89.73 87.75 8 100.00 100.00 100.00 100.00 100.00
9 99.64 99.59 99.77 99.48 99.96 99.14 9 100.00 100.00 100.00 100.00 100.00

10 95.21 98.35 98.26 97.13 97.22 97.31 10 88.58 83.12 86.41 93.10 91.15
11 99.90 99.90 99.34 100.00 99.90 99.81 11 73.28 80.61 85.41 78.28 76.65
12 97.76 100.00 99.94 99.89 99.89 99.74 12 97.97 87.52 91.23 88.36 92.91
13 99.45 100.00 100.00 100.00 99.78 99.89 13 100.00 100.00 100.00 100.00 100.00
14 97.38 99.43 100.00 99.81 99.53 98.87 14 99.84 94.70 91.85 97.94 95.81
15 66.82 88.23 88.37 87.65 84.86 88.96 15 97.40 100.00 99.22 99.74 99.22
16 99.00 99.94 99.88 99.88 99.66 99.88 16 100.00 100.00 100.00 100.00 100.00

Four networks on the University of Pavia dataset were selected for comparison with
the original unpruned network in Table 7. Compared with the original network, the OA
of the pruned network was improved, and the OA reached 97.58% when the pruning rate
was 92.93%. With the improvement of pruning rate, the obtained sparse network can still
maintain the optimal classification accuracy on many categories.

Five of the sparse networks on the Salinas dataset obtained from each of the two experi-
ments were selected for comparison with the original unpruned networks in Tables 6 and 7.
Implementing multi-task pruning with the Indian Pines dataset pruned 87.15% of the
networks, and obtained the best results. Each class in the original network did not reach
100%, but the network after pruning can be completely classified correctly in multiple
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classes, which indicates that the training of the network is limited in the case of limited
samples, and the problem of limited samples can be alleviated after knowledge transfer
between tasks. Different sparse networks obtain the best classification accuracy on different
categories, which provides a choice for different classification requirements.

Table 7. Results after fine-tuning of sparse networks on the Pareto-optimal front on collaborative
pruning task (University of Pavia and Salinas). Best results are reported in bold.

Category ORG Pruned Networks in Salinas Category ORG Pruned Networks in University of Pavia

Pruned (%) 0.00 84.30 90.33 93.33 95.97 98.18 Pruned (%) 0.00 83.14 89.98 92.08 92.93
OA (%) 92.05 95.02 95.26 95.46 94.26 93.83 OA (%) 91.67 97.57 97.55 97.18 97.58

KAPPA (%) 91.13 94.46 94.73 94.95 93.61 93.13 KAPPA (%) 76.24 96.79 96.76 96.28 96.80
AA (%) 95.50 98.02 98.08 98.07 97.17 96.95 AA (%) 85.11 97.84 97.77 97.48 97.66

1 99.90 99.60 99.95 99.90 99.95 99.80 1 69.91 95.58 95.11 94.78 94.85
2 99.81 99.97 100.00 99.91 100.00 99.43 2 82.99 98.14 98.25 97.73 98.72
3 86.33 99.59 99.74 99.24 95.95 95.34 3 74.08 96.95 97.33 94.94 95.66
4 99.92 99.28 99.06 99.28 98.70 98.85 4 94.48 97.74 96.86 96.96 98.95
5 98.99 99.43 99.47 99.66 97.90 97.34 5 99.95 99.77 100.00 99.62 100.00
6 99.99 99.97 99.97 99.97 100.00 100.00 6 72.51 98.60 99.18 98.52 97.81
7 99.30 99.66 100.00 99.91 99.63 98.99 7 83.75 99.92 99.24 99.17 99.62
8 88.59 84.86 87.08 87.88 87.68 86.40 8 90.82 95.05 94.94 96.19 94.32
9 99.64 99.96 99.51 99.06 98.98 99.16 9 97.57 98.83 99.04 99.36 99.04
10 95.21 98.13 98.23 97.62 95.72 95.85
11 99.90 100.00 100.00 100.00 99.53 99.62
12 97.76 99.94 100.00 100.00 100.00 99.94
13 99.45 100.00 99.89 99.89 99.89 100.00
14 97.38 99.90 100.00 99.25 99.53 99.71
15 66.82 88.05 86.46 87.60 81.70 81.24
16 99.00 100.00 99.94 100.00 99.66 99.55

The proposed method uses the evolutionary multi-objective optimization model to
realize the simultaneous optimization of network performance and network complexity,
and automatically obtains multiple sparse networks. Some points on the Pareto-optimal
front are selected for comparison, the classification results of the pruned network obtained
on the Pareto-optimal front on different HSIs are shown in Figure 16. With the increase in
the sparsity, the OA and AA of the network gradually decrease, but they are better than
the neural network method directly trained on limited labeled sample data. In general,
the proposed method can obtain a set of non-dominated sparse network solution at the
same time, and the quality of sparse network is high, which can provide reference for
practical datasets without labeled, and the method can be applied to different datasets.

(a) P83.66% (b) P84.00% (c) P84.86% (d) P91.27%

(e) P83.14% (f) P89.98% (g) P92.08% (h) P92.93%

Figure 16. Cont.
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(i) P84.09% (j) P87.15% (k) P92.93% (l) P96.49% (m) P97.21% (n) P84.30% (o) P90.33% (p) P93.33% (q) P95.97% (r) P98.18%

Figure 16. Classification maps on Indian Pines, Salinas, and University of Pavia datasets. GT
represents ground truth and P represents pruned network.

4.2.5. Effectiveness Analysis of Self-Adaptive Knowledge Transfer strategy

For the quality of knowledge transfer between tasks, three metrics are given:

• Proportion of migrated individuals: After the elite retention operation of NSGA-II,
the proportion of individuals who survived through knowledge transfer in the new
population is calculated in the whole population, and the overall quality of the transfer
is evaluated. The higher the ratio is, the better the quality of knowledge transfer is,
which can greatly promote the population optimization.

• Transfer knowledge contribution degree: the minimum non-dominated rank of all
transfer individuals after non-dominated sorting of the main task. The smaller the
rank is, the more excellent the transfer individual is in the population, which indicates
the greater contribution of the population optimization.

• Self-adaptive knowledge transfer probability (rmp): the variable used to control the
degree of knowledge transfer in the self-adaptive transfer strategy. A larger value of
rmp represents a stronger degree of interaction.

As shown in Figure 17, there are more individuals with transfer knowledge in the
early stage of evolution, with the proportion distribution ranging from 50% to 10%. Al-
though the rmp curve shows that the strength of knowledge transfer is almost the same,
which indicates that the knowledge transfer in the early evolution can greatly help the
search, but with the continuous optimization and convergence of the population, the ef-
fect of knowledge transfer is declining. Because of the contribution degree of transfer
knowledge—although fewer individuals survive through knowledge transfer—part of the
knowledge is still of high quality, which is still very effective for promoting the optimization
of tasks.

Because the search of the task has not converged in the early stage, knowledge can
provide a general network structure to guide the search. However, with the continuous
optimization of the task, it is necessary to transfer very high-quality knowledge to promote
search. At this time, although the knowledge transfer is heavy, only the part of individuals
containing high quality can survive. Therefore, the self-adaptive knowledge transfer
strategy based on the historical information is necessary.

During the evolution of the University of Pavia dataset as another task, as shown in
Figure 17, a long dormancy mechanism is triggered, which indicates that the self-adaptive
transfer strategy during this period considers the knowledge as invalid and intrusive. This
may be due to the fact that there are differences between the datasets collected by different
detection devices and there are few spectral features in common. Therefore, it is more
useful to build multi-task optimization with datasets collected by the same sensor.
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Figure 17. Knowledge transfer between tasks: the left column uses the Indian Pines dataset as another
task of collaborative pruning, and the right column uses the University of Pavia datatset as another
task of collaborative pruning.

4.2.6. Discussion

In this part, the proposed method is validated on more complex networks and larger
HSI dataset. The proposed method is used to prune the complex network CMR-CNN [69]
for HSI classification, the number of parameters is 28,779,784. A new cross-mixing residual
network denoted by CMR-CNN is developed, wherein one three-dimensional (3D) resid-
ual structure responsible for extracting the spectral characteristics, one two-dimensional
(2D) residual structure responsible for extracting the spatial characteristics, and one as-
sisted feature extraction (AFE) structure responsible for linking the first two structures
are designed.

Table 8 shows the pruning results of CMR-CNN on different HSIs. For this network,
there is almost no decrease in the OA of the network after pruning nearly 75% of the
parameters, and the OA of the network on Indian Pines is improved by 0.46%, which
proves that our method can be applied to complex networks and can alleviate the overfitting
problem of training on complex networks. Compared with the original network, the pruned
network can cut most of the parameters, and can also accelerate the test time of the network
in a certain range. On the University of Pavia dataset, the training time is reduced by 9.58%
and on the Salinas dataset, the training time is reduced by 14.8%. The above comparison
experiment proves the significance and necessity of neural network pruning.
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Table 8. Pruning results of CMR-CNN.

HSIs Salinas Indian Pines University of Pavia

Method CMR-CNN NCPM CMR-CNN NCPM CMR-CNN NCPM

Pruned (%) 0.00 73.44 0.00 76.85 0.00 75.2
TrainTime (s) 9283 7909 2088 2058 7832 7082

Parameter 28,779,784 7,643,640 28,779,784 6,662,135 28,779,784 7,137,390

OA (%) 99.97 99.97 98.69 99.15 99.65 99.63
AA (%) 99.94 99.93 98.6 98.52 99.32 99.05

Kappa (%) 99.97 99.97 98.51 99.03 99.54 99.5

In addition, AlexNet [6] and VGG-16 [7] are pruned on image classification dataset
CIFAR10, The Naive-Cut [70] method is a manual pruning method that uses the weight
size as the redundancy.

The comparison results after fine-tuning are shown in Table 9. As the complexity
of the network and the number of parameters increase, the gap between the proposed
method and other neural network pruning methods becomes larger. Compared with the
traditional single-objective pruning methods Naive-Cut and L2-pruning, the proposed
method can obtain a set of networks with different sparsity and accuracy values in one run.
At close accuracy, the solution obtains more sparse results. This is because the proposed
evolution-based method has strong local search capability and is able to obtain sparse
network structures in the search space. Due to the higher search efficiency and better
diversity maintenance strategy, the proposed method can better ensure the population
diversity in the evolution process than MOPSO.

Table 9. Pruning results of AlexNet and VGG-16.Best results are reported in bold.

Models Methods Accuracy Parameter Pruned (%) CR

AlexNet

Naive-Cut 80.33 564,791 85.00 6.7×
L2-pruning 80.90 338,874 91.00 11.1×

MOPSO 80.97 364,854 90.31 10.3×
NCPM 95.18 304,610 91.91 12.4×

VGG-16
Naive-Cut 87.47 6,772,112 53.98 2.17×
MOPSO 83.69 1,358,248 90.77 10.83×
NCPM 95.91 2,096,970 85.75 7.017×

The Pavia Center is captured by the ROSE-3 satellite, and the photographed terrain
is the urban space of the University of Pavia, Italy. This dataset has a spatial resolution
of 1.3 m and an image size of 1096 × 715 pixels. The dataset contains 114 spectral bands
with spectral wavelengths ranging from 430 to 860 nm. After removing the noise bands,
the number of bands used for classification is 104. Figure 18 show the pseudo-color plots
and labels of Pavia Center.

Figure 18. The false-color image and reference image on Pavia Center dataset.

Table 10 compares the classification results of the pruned network with the results
of other neural network methods. Figure 19 shows the classification maps of different
methods on Pavia Center. In the collaborative pruning task in the University of Pavia
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and Pavia Center datasets, a sparser network structure is obtained on the Pavia Center.
OA is still maintained at 97.45%. On the University of Pavia dataset, a 97.39% OA is
obtained in Pavia Center, which is better than the original network 3DDL, as well as the
results on 1DCNN and M3DCNN. This also proves that proposed method can be applied
to larger HSIs.

Table 10. Classification accuracy (%) for collaborative pruning task (University of Pavia and Pavia
Center datasets). Best results are reported in bold.

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 90.88%

OA (%) 88.32 81.67 94.36 97.43 93.47 97.72 98.48 97.45
AA (%) 91.29 85.11 94.87 96.12 94.81 97.14 98.36 96.25

Kappa (%) 84.85 76.24 92.59 96.60 91.46 96.91 97.19 96.62

1 83.47 69.91 85.03 95.53 86.98 92.35 94.12 97.78
2 87.08 82.99 96.24 99.52 93.71 98.92 99.48 99.43
3 88.42 74.08 89.09 88.61 88.58 95.41 96.86 89.37
4 96.57 94.48 96.34 96.01 96.96 96.99 97.94 96.02
5 99.99 99.95 99.99 100.00 99.99 100.00 100.00 99.85
6 91.05 72.51 98.03 98.01 97.43 99.97 99.63 95.13
7 91.42 83.75 95.78 97.66 96.76 98.84 99.60 93.08
8 84.46 90.82 94.16 95.54 93.18 97.48 94.41 96.03
9 99.15 97.57 99.15 94.19 99.47 99.62 99.52 99.57

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 91.70%

OA (%) 96.55 97.71 97.90 99.55 99.20 99.06 99.10 97.39
AA (%) 89.57 92.57 92.50 98.71 96.92 96.78 96.75 91.32

Kappa (%) 95.11 96.76 97.03 99.37 98.87 98.68 99.16 96.91

1 99.63 99.93 99.99 99.99 99.99 99.94 99.99 99.96
2 95.65 95.64 96.51 96.77 97.06 98.31 99.43 95.76
3 89.51 94.43 89.44 98.83 96.18 90.45 99.31 91.13
4 67.37 81.48 79.32 97.24 88.97 96.01 99.53 70.73
5 83.38 92.64 96.47 99.72 98.73 99.72 99.17 92.95
6 97.05 96.30 96.75 98.36 99.18 99.59 99.19 98.14
7 84.67 85.22 87.42 99.17 98.94 94.82 99.86 83.47
8 98.67 99.80 99.70 99.93 99.71 99.59 99.18 99.13
9 90.18 87.67 86.90 98.39 93.53 92.59 99.01 90.63

(a) 1DCNN (b) 3DDL (c) M3DCNN (d) DCCN

(e) HybridSN (f) ResNet (g) DPRN (h) P91.70%

Figure 19. Classification maps on Pavia Center. Where P represents Pruned Network.

5. Conclusions

Classification and network pruning tasks for several HSIs are established. In the
evolutionary pruning search within each task, important local structural information is
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acquired and learned. Knowledge transfer between tasks is used to transfer important
structures for representation in other tasks to the current task, which guides the learning
and optimization of the network on limited labeled samples. It effectively improves the
problem of network model overfitting and difficult training caused by limited labeled
samples in each task. The self-adaptive transfer strategy based on historical information
and dormancy mechanism achieves the original design goal: transferring as much good
knowledge as possible and avoiding as much negative knowledge as possible.

Experiments on HSIs show that the proposed method can simultaneously realize
classification and structure sparsification on multiple images. By comparing with other
pruning methods on image classification data, the proposed method can search for sparser
networks while maintaining accuracy. For structured pruning, which is currently more
popular, the computation of sparse weight matrices can be avoided, so our future work will
consider applying the proposed framework to structured pruning. Therefore, it is necessary
to consider knowledge and knowledge transfer strategy in structured pruning. This will
further expand our work in the area of neural network architecture optimization. Finally,
the proposed method needs to be tested on hardware devices to verify the feasibility and
practicability of the method.
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Abstract: Deep neural networks (DNNs) have been widely utilized in automatic visual navigation
and recognition on modern unmanned aerial vehicles (UAVs), achieving state-of-the-art performances.
However, DNN-based visual recognition systems on UAVs show serious vulnerability to adversarial
camouflage patterns on targets and well-designed imperceptible perturbations in real-time images,
which poses a threat to safety-related applications. Considering a scenario in which a UAV is suffering
from adversarial attack, in this paper, we investigate and construct two ensemble approaches with
CNN and transformer for both proactive (i.e., generate robust models) and reactive (i.e., adversarial
detection) adversarial defense. They are expected to be secure under attack and adapt to the resource-
limited environment on UAVs. Specifically, the probability distributions of output layers from base
DNN models in the ensemble are combined in the proactive defense, which mainly exploits the weak
adversarial transferability between the CNN and transformer. For the reactive defense, we integrate
the scoring functions of several adversarial detectors with the hidden features and average the output
confidence scores from ResNets and ViTs as a second integration. To verify their effectiveness in the
recognition task of remote sensing images, we conduct experiments on both optical and synthetic
aperture radar (SAR) datasets. We find that the ensemble model in proactive defense performs
as well as three popular counterparts, and both of the ensemble approaches can achieve much
more satisfactory results than a single base model/detector, which effectively alleviates adversarial
vulnerability without extra re-training. In addition, we establish a one-stop platform for conveniently
evaluating adversarial robustness and performing defense on recognition models called AREP-RSIs,
which is beneficial for the future research of the remote sensing field.

Keywords: deep neural network; adversarial defense; deep ensemble model; unmanned aerial
vehicle; remote sensing; image recognition

1. Introduction

Over the past several decades, an abundance of remote sensing images (RSIs) have
been continuously collected from UAVs with massive and detailed information that allows
researchers to observe the Earth more precisely. Nevertheless, the mode of image interpre-
tation, which relies only on expert knowledge and handcrafted features, can no longer meet
the requirements of higher accuracy and efficiency. Fortunately, the substantial progress of
DNNs [1] in computer vision has achieved the state-of-the-art performances in the various
tasks of remote sensing field and supported on-device inference for the real-time demands.
Well-trained DNNs can be deployed on UAVs for the tasks including image recognition,
object detection, image matching and so on, which enables quick feedback with useful
analysis for both military (e.g., target acquisition [2–5], battlefield reconnaissance [6], com-
munications [7–9]) and civilian (e.g., land surveys [10], delivery service [11,12], medical
rescue [13,14]) use.

However, hidden dangers lurk in the working process of UAV, and a great diversity of
counter-UAV attacks have been extensively developed that are targeted at its vulnerability,
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which mainly exists in the cyber, sensing, and kinetic domains [15]. Distribution drifts [16–18]
and common corruptions such as blur, weather and noise [19] also interfere with the au-
tomatic interpretations of RSIs in the image domain. Meanwhile, a new kind of threat
has emerged due to the security and reliability issues with DNN models [20–22], which
is known as adversarial vulnerability and potentially has devastating effects on the UAVs
with autonomous visual navigation and recognition systems. For example, when such
a UAV carries out a target recognition task, particularly for the non-cooperative vehicles
on military missions, the suspicious vehicles with carefully designed camouflage patterns
(i.e., physical adversarial attacks) or a leakage of real-time images with malicious pertur-
bations (i.e., digital adversarial attacks) can mislead the DNNs on UAVs to make wrong
predictions and violate the integrity of the outputs. In this way, the enemy’s targets are
likely to evade the automatic recognition, causing a severe disadvantage to the battlefield
reconnaissance. Thus, the harmful effects of adversarial vulnerability in DNN models need
to be taken more seriously for modern UAVs. Moreover, compared with the natural images
such as ImageNet [23], not as many RSIs are labeled in a dataset. Therefore, the trained
DNNs in the remote sensing field tend to be sensitive to adversarial attacks [24], which
puts forward a higher requirement on the adversarial robustness.

Under threat from the adversarial attacks, researchers are motivated to propose ef-
fective defense methods mainly in the context of natural images. The defense strategies
can be divided into two categories. The first is proactive defense to generate robust DNNs
aimed at correctly classifying all the attacked images. Adversarial training (AT) [25] is a
commonly used approach belonging to this category, which minimizes the training loss
with online-generated adversarial examples. However, standard AT counts on prior knowl-
edge with no awareness of new attacks and can decrease the accuracy of benign data. So,
many improved versions such as TRADES [26], FAT [27], and LAS-AT [28] are developed.
In addition, an attack designed for one DNN model may not confuse another DNN, which
makes ensemble methods [29–32] an attractive defense strategy while bridging the gap
between benign and adversarial accuracy. Ensemble methods against adversarial attacks
often combine the output predictions or fuse the features extracted from the intermediate
layers of several DNNs.

However, given the fact that obtaining a sufficiently robust DNN against any kind of at-
tack is not realistic, some research efforts have been turned to reactive defense, namely detecting
the input image whether it has been attacked or not. The detection strategy can be classified
into three categories, including statistical [33–38], prediction inconsistency-based [39,40] and
auxiliary model [41–44] strategies. In reactive defense, we do not modify the original victim
models during the detection and train a detector with a certain strategy as a 3rd-party entity.
Moreover, the reactive defense is valuable when the output of a baseline DNN does not
agree with the one from a robust DNN strengthened by a proactive defense method [45].

In this article, we consider the case that the DNN-based visual navigation and recogni-
tion systems on UAVs are suffering from adversarial attacks when performing an important
task after take-off. Aimed at this intractable scenario and several analyzed motives, we
propose to investigate the ensemble strategy to address the problem for both proactive and
reactive defense only using base DNN models:

• In proactive defense, standard AT and its variants need re-training and model updates
if UAVs meet unknown attacks, which does not suit the environment of edge devices
with limited resources (e.g., latency, memory, energy); thus, an ensemble of base DNN
models can be an alternative strategy. Intuitively, an ensemble is expected to be more
robust than an individual model, as the adversary needs to fool the majority of the
sub-models. As the representative models of CNNs and transformers, ResNet [46] and
Vision Transformer (ViT) [47] have different network architectures and mechanisms in
extracting discriminative features. We also verify that the adversarial examples of RSIs
show weak transferability between CNNs and transformers. Therefore, we combine the
probability distributions of output layers from CNNs and transformers with standard
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supervised training for a better performance under adversarial attacks in the recognition
of RSIs.

• In terms of reactive defense, we consider a case study with the framework of ENsemble
Adversarial Detector (ENAD) [48], which combines scoring functions computed by
multiple adversarial detection algorithms with intermediate activation values in a well-
trained ResNet. Based on the original framework, we further integrate the scoring
functions from ViT with the ones from ResNet, forming a connection with the ensemble
method in proactive defense. Therefore, the ensemble has two levels of meaning: one is
combining layer-specific values from multiple adversarial detection algorithms, and
the other is integrating the results from CNNs and transformers. Different detection
algorithms with different network architectures can exploit distinct statistical features of
the images, so this ensemble strategy is highly suitable for RSIs with rich information.

Both of the defenses in the form of an ensemble will be activated when the controller
realizes that the outputs from the system on UAVs are obviously manipulated. The sup-
posed scenarios and the role of ensemble defense are illustrated as Figure 1. To verify their
effectiveness, we conduct a series of experiments with the datasets including optical and
SAR RSIs. For proactive defense, we compare the performances regarding the Attack Success
Rate of an ensemble of base ResNets and ViTs for different adversarial attack algorithms
with three other proactive defense to improve the robustness of base DNN models. In
terms of reactive defense, we compare the ensemble framework with three stand-alone
adversarial detectors, which are also the components in the ensemble framework. The
metrics of detection are the Area Under the Receiver Operating Curve (AUROC) and the
Area Under Precision Recall (AUPR).

Figure 1. The threat scenarios caused by adversarial vulnerability in modern UAVs and the role of
our adversarial ensemble defense (blue lines: general working mode of UAVs; red lines: confrontation
with adversarial attacks).

From the experimental results, we find that an ensemble of base ResNets and ViTs
demonstrates good defensive capability in most experimental configurations of proactive
defense. It does not need a re-training but can be on a par with the methods based on AT.
Moreover, an ensemble framework modified from ENAD can yield AUROC and AUPR of
over 90 in gradient-based attacks of optical datasets. The performances of the ensemble
method slightly decrease on Deepfool, C&W and adversarial examples of SAR RSIs, but it
is still generally better than the stand-alone adversarial detectors.

Based on the above work, we establish a one-stop integrated platform for evaluating
the adversarial robustness of DNNs trained with optical or SAR RSIs and conducting
adversarial defenses on the models called Adversarial Robustness Evaluation Platform for
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Remote Sensing Images (AREP-RSIs). Users can operate just on AREP-RSIs to perform a com-
plete robustness evaluation with all necessary procedures, including training, adversarial
attacks, tests for recognition accuracy, proactive defense and reactive defense. AREP-RSIs
can be deployed on the edge devices such as UAVs and connected with cameras for real-
time recognition as well. Equipped with various network architectures, several training
paradigms, and classical defense methods, to the best of our knowledge, AREP-RSIs is
the first platform for adversarial robustness improvements and evaluations in the remote
sensing field. More importantly, the framework of AREP-RSIs is flexibly extendable. Users
can add the model architecture files, load their own weight configurations, and register
new attack and defense methods for a customized DNN, which greatly facilities designing
robust DNN-based recognition models in the remote sensing field for the future research.
The AREP-RSIs can be available at Github (https://github.com/ZeoLuuuuuu/AREP-RSIs,
accessed on 26 April 2023).

In summary, the main contributions of this paper are as follows.

• We innovatively analyze the adversarial vulnerability from a scenario in which the
edge-deployed DNN-based system for visual navigation and recognition on a modern
UAV is suffering from adversarial attacks produced by the physical camouflage patterns
or digital imperceptible perturbations.

• To cope with the intractable condition, we investigate the ensemble of ResNets and
ViTs for both proactive and reactive defense for the first time in the remote sensing
field. We conduct experiments with optical and SAR remote sensing datasets to verify
that the ensemble strategies have good efficacy and show a favorable prospect against
adversarial vulnerability in the DNN-based visual recognition task.

• We finally integrate all the procedures of performing adversarial defenses and evaluat-
ing adversarial robustness into a platform called AREP-RSIs. Equipped with various
network architectures, several training paradigms, and defense methods, users can ver-
ify if a specific model has good adversarial robustness or not just through this one-stop
platform AREP-RSIs.

The rest of this paper is organized as follows. Section 2 introduces the background
knowledge, related works and threat model utilized in this article. Section 3 tells why we
use the ensemble strategy, specific methods and our developed platform in detail. Section 4
reports on the experimental results and provides an analysis. Finally, the conclusions are
given in Section 5.

2. Background and Related Works

This section briefly reviews the causes of adversarial vulnerability in image recognition
tasks and existing research of the adversarial vulnerability in the remote senisng field and
DNN-based UAVs. Finally, we provide a threat model including the potential approaches
of attacking the automatic recognition systems of UAVs with adversarial examples, some
possible goals and the access level of models for attackers.

2.1. Causes of Adversarial Vulnerability in Image Recognition

To better learn the adversarial vulnerability in an image recognition system, its possible
causes are discussed theoretically. Sun et al. [49] give a comprehensive analysis, and based
on their work, we briefly review the reasons why adversarial vulnerability is a common
problem for image recognition.

• Dependency on Training Data: The accuracy and robustness of an image recognition
model are highly dependent on the quantity and quality of training data. During the
training process, DNN models only learn the correlations from data, which tend to
vary with data distribution. In many security-sensitive fields, the severe scarcity of
large-scale high-quality training data and the problem of category imbalance in the
training datasets can exacerbate the risk of adversarial vulnerability of DNN models.

• High-Dimensionality of Input Space: The training dataset only covers a very small
part of the input space portion, and a large amount of potential input data are not
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utilized. Moreover, hundreds of parameters are optimized during the training process,
and the space formed by parameters is also huge. Therefore, the generalized decision
boundaries in the input space are just roughly approximated by DNNs, which can-
not completely overlap with the ground-truth decision boundaries. The adversarial
examples may exist in the gap between them.

• Black-box property of DNNs: Due to the complex network architectures and optimiza-
tion process, it is hard to directly translate the internal representation of a DNN into a
tool for understanding its wrong outputs under an adversarial attack. So, this black-box
property of DNNs makes it more difficult to design a universal defense technique
against adversarial perturbations from the perspective of the model itself.

2.2. Adversarial Vulnerability in DNN-based UAVs

In recent years, as DNNs are increasingly applied to the visual navigation and recog-
nition systems on UAVs, the security threat produced by adversarial attacks has been a
formidable problem, which can be utilized by the attackers with motives for maliciously
permeating into the working process of these DNN-based UAVs.

Previous research has indicated that this security problem exists in DNN models for
RSI recognition, which poses a threat to the modern UAVs. Most of them still focus on the
digital attacks, which directly manipulate the pixel values in RSIs and suppose full access to
the images for attackers. In terms of scene recognition, Li et al. [50] and Xu et al. [51] both
used various adversarial attacks to fool multiple high-accuracy models trained on different
scene datasets. In another article, Xu et al. also provided a black-box universal dataset with
adversarial examples called UAE-RS [52], which serve as a benchmark to design DNNs with
higher robustness. Even further, Li et al. [53] proposed a soft threshold defense for scene
recognition to judge whether an input RSI is adversarial or not. Focused on SAR target
recognition, Li et al. [54] mounted white-box attacks on SAR images and proposed a new
metric to successfully explain the phenomenon of attack selectivity. Du et al. [55] proposed
a fast C&W algorithm for DNN-based SAR classifiers, using a deep coded network to
replace the search process in the original C&W algorithm. Zhou et al. [56] focused on the
sparsity of SAR images and applied the sparse attack methods on the MSTAR dataset to
verify their effectiveness in SAR target recognition.

In addition, there are also explorations into physical adversarial attacks applied to
RSIs. Czaja et al. [57] conducted attacks through adversarial patches to confuse the victim
DNN among four scene classes, and den Hollander et al. [58] generated the patches for
the task of object detection. However, they only restricted their patches to the digital
domain and did not print them. The most relevant to our assumed scenario is the work
of Du et al. [59], in which they optimized, fabricated and installed their designed patches
on or around a car to significantly reduce the efficacy of a DNN-based detector on a UAV.
They also experimented under different atmospheric factors (lighting, weathers, seasons)
and distance between the camera and target. Their results indicated the realistic threat of
adversarial vulnerability on DNN-based intelligent systems on UAVs.

Moreover, some research has discussed the adversarial vulnerability in the context
of UAVs. Doyle et al. [15] considered two common operations for a navigation system of
UAVs: follow and waypoint missions to develop a threat model from the perspective of
attackers. They sketched state diagrams and analyzed the potential attacks for each state
transition. Torens et al. [60] give a comprehensive review for the verification and safety
of machine learning in UAVs. Tian et al. [61] proposed two adversarial attacks for the
regression problems of predicting steering angles and collision probabilities from real-time
images in UAVs. They also investigated standard AT and defensive distillation against the
two designed attacks.

2.3. Threat Model

We denote a real-time image captured and processed by the sensors as x ∈ Rh×w×c

with h, w, c representing height, width and channel (c = 3 for optical images and c = 1
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for SAR images), which is also the input of a DNN-based visual recognition system
M(·) deployed on UAVs. In addition, each image has a potential groundtruth label
y ∈ Y = {0, 1, . . . , K − 1} where K is the number of recognizable categories for the system.
A well-trained system M(·) can correctly recognize the scene or targets for most of x,
namely M(x) = y.

We suppose two possible approaches that attackers can exploit to attack the DNN-
based visual recognition system on UAVs.

(1) The first approach is to illegally access the Wi-Fi communication between the
sensors (i.e., cameras) and the controller for UAVs. The attackers can spoof impercepti-
ble perturbations ρ to the images provided by the sensors to craft adversarial examples
x̂ = x + ρ through the communication link. The wrong predictions y′ = M(x̂) �= y for most
of x̂ can influence the next commands and actions for UAVs.

(2) The second approach is physically realizing the perturbations as “ground camou-
flage” based on adversarial patches [62], especially for the task of target recognition. An
adversarial patch is generally optimized in the form of sub-images by modifying the pixel
values within a confined area, and the attacker then prints the patch as a sticker or poster.
Ref. [59] gives a real-world experiment for this approach by pasting designed patches on
top of or around vehicles to highly reduce the probabilities of detection and recognition
rates. Even if the patterns are noticeable to our human eyes, they can effectively confuse
the recognition system.

There are several reasons why attackers hope to do harm to the visual navigation
and recognition system on a UAV. For scene recognition, attackers can mislead UAVs to
incorrect situational awareness for military use. In addition, the misclassification of the
scene may make the navigation system confuse the current environment, become lost, and
hover in the air. For target recognition, once non-cooperative targets of high military value
are camouflaged, UAVs will not be able to accurately detect and recognize them, which
aims at evading aerial reconnaissance or targeted strikes in the battlefield.

The access level of the victim DNN models for attackers is an important factor. White-
box attackers are the strongest in all conditions. They can obtain the network structures,
weights and even the training data. In contrast, black-box attackers only query the outputs
at each attempt, craft adversarial examples against a substitute model or search randomly.
Moreover, whether they mislead DNNs to a specified class distinguishes an attack as a
targeted or untargeted one. In our threat model, we consider both white-box and black-box
settings during our experiments with the more general untargeted condition.

3. Methodology

This section will briefly analyze the motives of exploiting the ensemble strategy in
Section 3.1. Then, it will present the proactive–reactive defensive ensemble framework
in detail in Section 3.2 and finally introduce our edge-deployed platform AREP-RSIs for
adversarial robustness improvements and evaluations in Section 3.3.

3.1. Motives of Ensemble

As the most representative models of CNNs and transformers, ResNet and ViT are
mainly discussed within the defensive ensemble framework. Before a detailed description
of the defense method, we start with the reasons why the ensemble strategy should be
selected and attempted in the supposed scenario of this article.

3.1.1. Different Mechanisms for Feature Representations

Recently, ViTs have drawn great attention as a fundamentally new model structure
offering impressive performances in image recognition and robustness benefits as well [63].
Compared with CNNs, ViTs have striking differences in their feature representations [64].

Specifically, CNNs share kernels in each convolution layer (Conv) that locally perceive
a small part of the input image (i.e., receptive field) to extract features. The powerful
inductive bias of translation equivariance and locality correlation within the convolutional
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layers make CNNs excellent in learning general-purpose visual representations. However,
the receptive fields are limited with a fixed size, which is not conducive to obtaining global
information. In contrast, ViT processes an image as a sequence of image patches, and
each patch is linearly projected into a representation vector with a positional embedding.
Moreover, a learnable class token is also attached for the image. As the main component in
ViT, multi-head self-attention modules (MSAs) are then connected for an aggregation of
the information from all patches to have an entire view of the image.

More importantly, [65] revealed that the MSAs in ViT exhibit opposite behaviors with
the Convs in ResNet by performing the Fourier analysis of feature maps from both models.
The Convs act like a low-pass filter that tends to reduce low-frequency signals, while MSAs
are high-pass filters that are robust against high-frequency noise in images. In addition, [64]
found that ViT incorporates more global information and has more uniform representations
with greater similarity throughout the layers. There have been many hybrid architectures
that combine CNNs and transformers to inherit both of their advantages [66–69]. Therefore,
to some extent, ViT can be complementary to ResNet, which intuitively enlightens us about
the selection of network architectures in the ensemble.

3.1.2. Weak Adversarial Transferability

Reducing the adversarial transferability among base models in an ensemble can
achieve good robustness without sacrificing benign accuracy [70–72]. To further verify the
differences between ResNet and ViT in the context of remote sensing, we found empirical
evidence that the adversarial examples of RSIs tend to have weak transferability between
CNNs and ViTs, which facilities constructing ensemble classifiers to generate a more
robust model. For the details of transferability experiments, we trained a set of various
CNNs (including ResNet-18, ResNet-50, DenseNet-121, DenseNet-201, MobileNet-V2
and ShuffleNet-V2) and two ViT variants (ViT-Base/16 and ViT-Large/16) with the same
training setting on the MSTAR dataset. A white-box attack, PGD-ł∞ [25], is applied on the
test set of MSTAR with a different attack radius against the victim models of ResNet-18 and
ViT-Base/16, respectively. Then, both sets of generated adversarial examples are recognized
under each well-trained DNN model. Similarly, we conducted the experiments on the UC
Merced LandUse, which is an optical scene RSI dataset again. The results are illustrated
in Figures 2 and 3. From the results, for both datasets, we observe that the adversarial
examples crafted against ResNet-18 generally have much better performance of recognition
accuracy in ViTs and vice versa.

3.1.3. Defects in AT and Our solution for Edge Environment

One of the most commonly used methods for improving adversarial robustness is
still AT, which trained DNNs with both natural data and its corresponding adversarial
variants. Even though previous research indicated that AT can force DNNs to learn
robust features and gained better performance on adversarial robustness, the absence of
non-robust features can lead to a drop in generalization and the accuracy on the benign
data [73]. This trade-off between adversarial robustness and natural accuracy still needs
to be considered when using AT. Moreover, AT sometimes heavily counts on such prior
knowledge and cannot achieve a sufficient robustness against an unknown attack.

Generally, modern UAVs are equipped with different base DNN models instead of the
DNN models trained with AT for standard automatic visual recognition. When the UAVs
suffer from adversarial attacks in performing a recognition task, it is time-consuming to
make an extra re-training to obtain a new robust model and replace the base models on
the ground. Training on edge devices is also impractical because of the resource-limited
environment. Therefore, our proposed solution for this problem is attempting an ensemble
of base DNN models, especially DNNs with different network architectures and feature
extraction mechanisms. Based on the analysis of CNNs and transformers above, we decide
to use ResNet and ViT, which are two standard popular DNN architectures in the ensemble.
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They will be trained solely with benign data to improve adversarial robustness while
guaranteeing natural accuracy in our supposed scenario.

Figure 2. The transferability test of PGD on MSTAR against ResNet-18 (left) and ViT-Base/16 (right).

Figure 3. The transferability test of PGD on UC Merced LandUse against ResNet-18 (left) and
ViT-Base/16 (right).

In addition, we report the computation and memory footprints of base DNN models
used in our ensemble as shown in Table 1, including the number of parameters within
network architecture (Params), floating point operations (FLOPs) and parameter memory
footprint (Param. Mem). The specific network architectures consist of ResNet-18, ResNet-50,
and ResNet-101 for CNN and ViT-Base/16, ViT-Large/16, and ViT-Base/32 for transformer.

Table 1. The computation and memory footprints of base DNN models used in our ensemble.

Params (M) FLOPs (GFLOPs) Param. Mem (MB)

ResNet-18 11.69 2 45
ResNet-50 25.56 4 98
ResNet-101 44.55 8 170
ViT-Base/16 86.86 17.6 327
ViT-Base/32 88.30 8.56 336

ViT-Large/16 304.72 61.6 1053

As shown in Table 1, several of the network architectures we used such as ResNet-101
and ViT-Large/16 seem to be less suitable for the edge environment; however, our intention
of this attempt is to first verify that the ensemble of CNNs and transformers can resist
adversarial data of RSIs in both proactive and reactive defense. So, the two most commonly
used DNNs are selected for the paradigm in our article. In practice, we can replace them
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with more light-weight DNNs such as MobileNet, ShuffleNet, and Inception-V3 for CNN
and ViT-Tiny/16, EfficientFormer for transformer.

3.2. Proactive–Reactive Defensive Ensemble Method

3.2.1. Proactive Defense

In the non-ensemble schemes, a single base model is provided to attackers, which
can be attacked with the worst perturbations. However, based on the analyzed motives
above, an ensemble of CNNs and transformers suits our supposed scenario better. Our
defensive ensemble model includes both proactive and reactive defense. For proactive
defense, an ensemble model is a weighted average of N random base ResNets with dif-
ferent depths denoted as Ω1 = {R1,R2, ...,RN} and N base ViT variants denoted as
Ω2 = {RN+1,RN+2, ...,R2N}. To confuse the whole ensemble model, an attacker has to
design an attack against both types of DNN with more difficulty [74].

Specifically, we can train two sets of base DNNs including ResNets and ViTs with
N = 3 (i.e., Ω1 = {ResNet-18, ResNet-50, ResNet-101}, Ω2 = {ViT-Base/16, ViT-Large/16,
ViT-Base/32}). Ω1 and Ω2 form the overall set of base models Ω. We denote {Dj}2N

j=1 as

a large set including the probability distributions {djk}K
k=1 predicted by each base DNN

model, where djk is the confidence score of category k predicted by the jth base model and
K denotes the number of recognizable categories. Therefore, the probability distribution
for each base model can be expressed as (1).

Dj = {dj1, dj2, . . . djK}, j = 1, 2, . . . , 2N (1)

Then, we can weight the 2N models with non-negative values (ω1, ω2, ..., ω2N) that
add up to 1. Let a vector W denote these weights, and we can obtain a new probability
distribution D′ of the deep ensemble model with new confidence scores {d′k}K

k=1 by taking
a linearly weighted summation as (2).

D′ = W · (D1,D2, . . . ,D2N)
T = (d′1, d′2, . . . , d′K) (2)

In fact, the new probability distribution D′ is a fusion on the decision level, integrating
the opinions from CNNs and transformers. In addition, from the perspective of base
models, we can also express the DNN-based ensemble model M(x,W) as (3).

M(x,W) = W · Ω =
2N

∑
j=1

ωj · Rj (3)

The framework of this ensemble model for proactive defense is illustrated as Figure 4.
As shown in Figure 4, if a modern UAV captures real-time RSIs with BMP2 vehicles but
suffers from adversarial perturbations crafted for CNN architecture, these RSIs can be sent
to the proposed deep ensemble model and inferred by all of the base models simultaneously.
Even though the adversarial RSIs can mislead the predictions from CNNs, the outputs from
transformers are still correct. The model will fuse the opinions of CNNs and transformers
on the decision level, namely making a linear weighted summation as mentioned above, to
obtain the final correct prediction.

In terms of the weights of base models (ω1, ω2, . . . , ω2N) in the ensemble, one solution
is to weight them with fixed values, and we can search for the better set of values manually.
The other solution of deciding the models’ weights is to make them learnable, so the weights
can be adjusted automatically during the training time. In our following experiments, we
choose the former for simplicity.

This deep ensemble model for proactive defense only exploits standard base models
and does not need to require extra re-training such as AT, which constitutes a practical
attempt for improving the adversarial robustness of automatic recognition systems on edge
devices such as UAVs. It is also the first DNN-based ensemble model against adversarial
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attacks in the remote sensing field. In this way, more adversarial examples are expected
to be correctly recognized when confronting adversarial attacks. We will compare the
ensemble of ResNets and ViTs with a victim model without any defense and trained with
standard AT [25], Trades [26] and GAL [75] against malicious RSIs crafted by different
adversarial attack methods. The experimental results will be collected in the next section.
The Attack Success Rate (ASR) (i.e., the number of wrongly recognized RSIs divided by the
number of RSIs in the whole test set) will be the metric for the proactive defense.

Figure 4. The process of proactive ensemble method with MSTAR dataset and victim model ResNet-18.

3.2.2. Reactive Defense

Considering the fact that it is not possible for proactive defense to classify all types
of adversarial examples, detection-based methods (i.e., reactive defense) also deserve an
exploration to indirectly enhance the adversarial robustness. To pursue better performance
than individual adversarial detectors, we selected and modified an excellent deep ensem-
ble framework called ENAD [48], which integrates the scoring functions from different
adversarial detection algorithms on the hidden features of intermediate layers of CNNs.
Our modified version repeats these procedures on ViTs with the features extracted from a
transformer encoder and averages the detection outputs from both types of DNN at the
end of the framework as the second integration. The structure of an ensemble including
CNNs and transformers also matches our proposed model in the proactive defense.

The specific procedures of the ensemble model in reactive defense are illustrated
in detail in Figure 5. A real-time RSI captured by UAVs, which can be either benign or
maliciously attacked, is input to a well-trained ResNet and ViT. For ResNet, the activation
values from several selected hidden layers are then extracted. Next, the model will compute
layer-specific scores through three commonly used adversarial detection algorithms: Local
Intrinsic Dimensionality (LID) [34], Kernel Density Estimation (KDE) [35] and Mahalanobis
Distance (MD) [36]. Each detection algorithm measures the “distance” as the score based
on each activation value of the real-time RSI with respect to training examples and the
paradigm learned during the training time. The layer-specific scores for each detection
algorithm are fused to obtain the detector-specific scores, namely three final scores, which
are input to a logistic regression to compute a probability c1 of classifying the test RSI
as benign or adversarial. In the meantime, the above procedures are also performed in
parallel on ViT with the activation values extracted from multi-head self-attention in several
transformer encoders. The predicted probability from ViT is denoted as c2. c1 and c2 from
ResNet and ViT are averaged to obtain a final result p. The ensemble model will decide an
RSI image as the adversarial one if c is greater than 0.5, and it is benign otherwise.

In terms of the individual detectors (i.e., LID, KDE and MD) in the ensemble model
for reactive defense, there is one trick that needs to be considered. Apart from benign and
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adversarial examples, we also craft noisy examples with Gaussian noise that are treated as
benign examples during the training time for better generalization.

Figure 5. The procedures of reactive defense ensemble model modified from ENAD [48] (assuming
the number of layers in ResNet is n and the number of transformer encoders in ViT is k).

The extracted activation values are high-dimensional in both types of DNN model,
so different detection algorithms can use distinct statistical features of input images. The
ensemble idea integrates the features and is expected to be perfectly suited for the adver-
sarial detection of RSIs, because RSIs have rich information such as color, texture, spatial
and spectral features. Moreover, the first integration of multiple adversarial detectors can
better alleviate the problems of overfitting and generalization than just using one detector.
The second integration benefits from different feature representations in ResNet and ViT.
To evaluate the performances of detection, we take two standard metrics, Area Under the
Receiver Operating Characteristic (AUROC) and Area Under Precision Recall (AUPR). The
correctly detected adversarial and benign RSIs are true positives (TP) and true negatives
(TN), respectively. On the contrary, the wrongly detected adversarial and benign RSIs are
false negatives (FN) and false positives (FP), respectively.

3.3. Adversarial Robustness Evaluation Platform for Remote Sensing Images (AREP-RSIs)

Based on the above work, we further developed a one-stop platform for conducting
adversarial defense and conveniently evaluating the adversarial robustness of a DNN-
based visual recognition system on UAVs called Adversarial Robustness Evaluation Platform
for Remote Sensing Images (AREP-RSIs). AREP-RSIs are multi-functional, and users can
readily operate on this platform to evaluate the defensive performance for a DNN model
trained with RSIs. In addition, if we load a well-trained DNN model, AREP-RSIs connected
with cameras can predict the category of a scene or target for a real-time image and output
the confidence scores in the main interface.

As shown in Figure 6, AREP-RSIs is built as a modular framework with 6 sub-modules
including datasets, models, training, adversarial attack, test for recognition accuracy and
adversarial defense. For example, the module of a test for recognition accuracy has two
sub-models: single image test and batch images test. In the single image test, users can
load an RSI and an arbitrary DNN model file to obtain the predicted category and the
maximum confidence scores. If the selected RSI is detected as an adversarial example, the
activated feature maps of this adversarial image and its corresponding original image are
displayed. In the batch images test, a batch of RSIs is input to the selected DNN model,
and the interface will show a confusion matrix to visualize the recognition performance.
We can also know the recognition accuracy of this batch of RSIs.
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Figure 6. The overall framework of AREP-RSIs with 6 modules.

The graphic interface of this platform is designed with PyQt [76] and built upon
necessary libraries such as Pytorch [77], Adversarial Robustness Toolbox (ART) [78],
OpenCV [79] and Scikit-learn [80].AREP-RSIs includes several popular optical and SAR
RSI datasets for scene/target recognition. We show the screenshots of a graphic interface
of two modules in use, recognition test (single image test) and performing the proactive
defense as shown in Figures 7 and 8.

Figure 7. The interface of a recognition test of a single RSI in AREP-RSIs.

Moreover, all of these modules are highly extendable, which greatly facilities designing
robust DNN-based recognition models in the remote sensing field for future research. For
instance, we can include other adversarial defense methods for RSI recognition, such as
TRADES, GAL [75], and DVERGE [81] in proactive defense and FS [40] and DNR [42] in
reactive defense into AREP-RSIs. New DNN model architecture, training paradigms and
adversarial attacks can also be flexibly registered in AREP-RSIs for users to compare the
adversarial robustness before and after performing a specific adversarial defense scheme to
a base DNN model. In the current AREP-RSIs, we have embedded more than 20 types of
DNNs with different training schemes and various mainstream adversarial attacks. We will
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make the AREP-RSIs open source at Github (https://github.com/ZeoLuuuuuu/AREP-
RSIs, accessed on 26 April 2023).

Figure 8. The interface of performing proactive defense to generate robust models in AREP-RSIs.

4. Experiments

4.1. Datasets

(1) Scene Recognition: Two high-quality datasets for scene classification, UCM [82] and
AID [83], are selected for our experiments. Both of them include optical RSIs with scene
only. The RSI examples for each dataset are illustrated in Figures 9 and 10.

Figure 9. RSI examples randomly selected for each class from UCM.

UCM: The UC Merced LandUse Dataset contains 2100 RSIs from 21 different land-use
classes, each of which contains 100 256 × 256 images with a spatial resolution of 0.3 m
per pixel in the RGB color space. The dataset is derived from the National Map Urban
Area Imagery collection, which captures the scenes of nationwide towns across the United
States.

AID: AID is a large RSI dataset that collects scene images from Google Earth. The
dataset comprises 10,000 labeled RSIs containing 30 categories of scenes, approximately
200–420 images per category with an image size of 600 × 600 pixels. Even if the Google
Earth images are post-processed using RGB renderings of the original aerial images, this
does not affect its use in evaluating scene classification algorithms.

(2) Target Recognition: Two benchmark datasets for target recognition, MSTAR [84] and
FUSAR-Ship [85], are also utilized in the experiments. The RSI examples for each dataset
are illustrated in Figures 11 and 12.
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Figure 10. RSI examples randomly selected for each class from AID.

Figure 11. RSI examples randomly selected for each class from MSTAR.

Figure 12. RSI examples randomly selected for each class from FUSAR-Ship.

MSTAR: MSTAR is from the publicly available Moving and Stationary Target Acquisi-
tion and Recognition (MSTAR) dataset produced by the US Defense Advanced Research
Projects Agency. This dataset contains 5172 SAR sliced images of stationary vehicles with
10 categories acquired at various azimuths. The sensor is a high-resolution cluster SAR
with a resolution of 0.3 m × 0.3 m, operating in the X-band.

149



Remote Sens. 2023, 15, 3007

FUSAR-Ship: FUSAR-Ship is a high-resolution SAR dataset obtained from GF-3 for
ship detection and recognition. The maritime targets are divided into two branches, ship
and non-ship. Here, we selected four sub-classes, bulk carrier, cargo ship, fishing and
tanker from ship targets, collecting 420 images in total.

4.2. Experimental Setup and Results

We designed our experiment in a systematic manner to verify the adversarial robust-
ness improvement of DNNs for RSI recognition after performing an ensemble strategy. In
fact, our experiments include four procedures, which are training and testing base DNNs
for recognition in RSIs, performing adversarial attacks with RSIs against the base models,
improving adversarial robustness with the proactive ensemble model and detecting adver-
sarial examples with the reactive ensemble model. All the experiments are implemented
on a server equipped with an Intel Core i9-12900KF 3.19 GHz CPU, 32 GB of RAM and one
NVIDIA GeForce RTX 3090 Ti GPU (24 GB Video RAM). The deep learning framework
is Pytorch 1.8. All of the above experiments can be performed on the one-stop integrated
platform AREP-RSIs, which makes it greatly convenient for users to evaluate the defensive
effectiveness and adversarial robustness.

In this part, we collected all the quantitative results presented in the form of a graph or
table, and in the following part, we analyzed the results adequately to verify if the ensemble
models for both proactive and reactive defense are effective for the RSI recognition task.

In the first part, the training sets are randomly selected with 80% labeled images in
each dataset, and the remaining images make up the test set. The trained base models
are also the components in the following proactive ensemble model including ResNet-18,
ResNet-50, ResNet-101, ViT-Base/16, ViT-Base/32 and ViT-Large/16. We train all models
for 100 epochs with batch size = 32, and the optimizer as Adam [86]. We collected the
recognition accuracy of the test set for these base models, as shown in Table 2.

Table 2. Recognition accuracy of base DNN models for test set of RSI datasets (the values below are
averaged from 10 repeated experiments).

UCM AID MSTAR FUSAR-Ship

ResNet-18 96.19% 95.65% 94.80% 81.40%
ResNet-50 96.67% 96.05% 97.73% 80.95%
ResNet-101 92.38% 97.90% 93.32% 77.91%
ViT-Base/16 94.80% 92.70% 88.21% 79.76%
ViT-Base/32 91.80% 91.20% 82.64% 76.19%

ViT-Large/16 87.38% 93.34% 88.08% 78.57%

In terms of adversarial attacks, both white-box and black-box conditions are consid-
ered. Specifically, we choose 4 white-box and 2 black-box attack algorithms including
the Fast Gradient Sign Method (FGSM) [25], Basic Iterative Method (BIM) [87], Carlini
and Warger Attack (C&W Attack) [88], Deepfool [89], Square Attack (SA) [90] and Hop-
SkipJump Attack (HSJA) [91]. The settings for attacks in our experiment are shown in
Table 3. The victim model is ResNet-18 and ViT-Base/16.

Table 3. Important parameters of attack algorithms utilized in the experiments.

Batch Size
Norm of

Perturbation
Maximum

Perturbation
Number of
Iterations

FGSM 32 L2 0.25 –
BIM 32 L2 0.125 25

C&W 32 L∞ – 20
Deepfool 8 – – 50

SA 16 L2 0.3 50
HSJA 16 L2 – 50
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In the part of proactive defense, we will recognize the generated adversarial data with
the victim base models (i.e., ResNet-18 and ViT-Base/16). We set the weight of each base
model in the ensemble as the same value, namely 1/2N. The results of ASR from the victim
model will be viewed as the performances before the defense. To evaluate the effectiveness
of the ensemble model, we also conduct three counterparts in proactive defense of PGD-AT
(adversarial training with PGD-perturbed RSIs), TRADES and GAL on the victim base
models. The results for proactive defense are graphed as shown in Figures 13 and 14, and
the victim model is labeled as Without Defense in both graphs.

Figure 13. Comparisons in ASR of ensemble model in proactive defense with that of base model
ResNet-18 and its three counterparts (the results are averaged from 10 repeated experiments).

Figure 14. Comparisons in ASR of ensemble model in proactive defense with that of base model
ViT-Base/16 and its three counterparts (the results are averaged from 10 repeated experiments).

In the last part of reactive defense, we compare the performances of the ensemble
model with stand-alone detectors (i.e., KDE, LID and MD) in the ensemble framework. All
four detectors exploit layer-specific scores from several intermediate layers of ResNet-18
and transformer encoders of ViT-Base/16 through logistic regression, and they detect if the
input RSI is adversarial or benign. We only selected white-box attacks on UCM, AID and
MSTAR for the experiments of this part because the RSIs in the test set of FUSAR-Ship are
too inadequate to obtain stable data and analyze meaningful conclusions. The results of
reactive defense are shown in Tables 4–6.
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Table 4. Performances of ensemble method on UCM with three individual detection algorithms (the
results below are averaged from 10 repeated experiments).

Dataset
FGSM BIM DeepFool C & W

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

UCM

LID 88.89 90.30 88.52 89.53 57.91 65.22 64.27 72.35
MD 92.95 88.51 90.24 84.83 67.45 74.28 76.44 83.42
KDE 88.67 89.56 83.13 84.63 66.26 75.21 61.75 75.27

Ensemble 93.26 94.15 91.35 94.10 75.73 82.29 80.26 85.18

Table 5. Performances of ensemble method on AID with three individual detection algorithms (the
results below are averaged from 10 repeated experiments).

Dataset
FGSM BIM DeepFool C & W

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

AID

LID 89.38 90.25 89.47 84.35 60.12 74.39 73.72 71.43
MD 92.67 93.33 89.46 92.23 71.15 77.23 77.41 85.63

KDE 87.59 83.84 80.93 83.30 68.18 78.32 61.51 73.77
Ensemble 95.73 95.93 93.37 95.10 74.05 81.08 80.40 84.15

Table 6. Performances of ensemble method on MSTAR with three individual detection algorithms
(the results below are averaged from 10 repeated experiments).

Dataset
FGSM BIM DeepFool C & W

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

MSTAR

LID 81.58 83.17 81.13 82.79 71.80 74.83 68.47 71.61
MD 83.45 84.85 85.73 77.67 67.25 72.23 75.41 78.24
KDE 74.51 73.84 77.93 82.17 73.60 78.74 69.54 68.50

Ensemble 82.43 86.91 86.57 87.04 72.13 77.37 75.67 78.59

4.3. Discussion

4.3.1. Recognition Performance of Base Models

First, for the base models in an ensemble of proactive defense, we trained them with
the same setting and reported the recognition accuracy on the test sets. It can be observed
that most of the 24 models yield very good performances with an accuracy of more than 85%
except for the models on FUSAR-Ship. The reason for a drop in FUSAR-Ship is probably
that the number of RSIs in FUSAR-Ship is scarce (only 420 RSIs in total) and the appearances
of targets in four categories are similar, which makes it hard for the DNN model to learn
the discriminative features to correctly distinguish them. The highest accuracy comes from
ResNet-101 on AID, which can reach 97.86%. Models with deeper layers and more complex
architectures perform a little bit worse such as ResNet-101 and ViT-Large/16 on UCM,
which may be caused by a slight overfitting problem as the train data are not that sufficient.
Nevertheless, all of these base models are well-trained and will be utilized in the later
experiments of ensemble strategy for adversarial defense.

4.3.2. Analysis on Proactive Defense

We crafted adversarial examples against the ResNet-18 and ViT-Base/16, respectively,
for each dataset with adversarial attack methods. The adversarial data are then recognized
by the corresponding victim base model, our proposed ensemble model, and the victim base
model is strengthened by three popular proactive defense methods. It can be noticed that
in Figures 11 and 12, the height of all pink columns indicates that the ASR of these attacks
reaches a very high level for the victim base model, which exhibits serious adversarial
vulnerability and needs to be reduced urgently.
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For adversarial examples generated against ResNet-18, we find that the ensemble of
ResNets and ViTs performs well in optical datasets, especially with FGSM, BIM, Deepfool
and HSJA attacks. In an optical setting, the ensemble can perform more consistently
than other proactive defense methods. For example, ResNet-18 with Trades can correctly
recognize more adversarial examples in BIM, but it has unsatisfactory performance in
Deepfool. For the ensemble model, the best result is from the FGSM of UCM, with only
9.52% ASR. For SAR configurations, the ensemble of base models obtains better results in
MSTAR than FUSAR-Ship, while it is worse than those from UCM and AID. In general, if we
say an ASR below 30% is qualified, the ensemble has a good result in 15 out of 24 scenarios.

For adversarial examples generated against ViT-Base/16, the ensemble of ResNets and
ViTs also maintains relatively low ASRs for most adversarial attack methods in optical RSI
datasets. It is interesting to find that the ensemble model performs even worse than the
base model without defense in Deepfool of MSTAR, but in C&W, another attack with very
imperceptible noise, it yields decent values for MSTAR. Still, if we say an ASR below 30%
is qualified, the ensemble has an acceptable result in 14 out of 24 scenarios.

Overall, compared with the models without defense under an adversarial attack, the
ensemble strategy effectively improves the adversarial robustness and can rival or even
perform better than the three other popular adversarial proactive defense methods.

4.3.3. Analysis on Reactive Defense

Last but not least, for reactive defense, we first discuss the results in optical RSI
datasets. It can be observed that the ensemble method obtains the best AUPR or AUROC
in 15 out of 16 scenarios. For gradient-based attacks of FGSM and BIM, the ensemble
model can yield AUPR and AUROC values of more than 90%, which are obviously better
than those from Deepfool and C&W. That is because Deepfool finds the shortest path
to guide original RSIs across a decision boundary to generate adversarial examples, and
C&W is an optimized-based attack with very small perturbations added to the original
RSIs. The best result comes from the ensemble model in detecting FGSM on AID, with
AUPR and AUROC values of 95.73 and 95.93, respectively. In addition, the results of FGSM
are slightly better than those of the BIM attack, which is probably because the maximum
perturbation in FGSM-perturbed RSIs is a little larger; thus, it leads to more obvious
changes in feature representation. With respect to two harder situations, Deepfool and
C&W, the ensemble model still shows better ability than stand-alone adversarial detection
algorithms, especially with obvious improvements in Deepfool and C&W on UCM. MD
only yields AUPR and AUROC values of Deepfool on UCM as 67.25 and 74.28, while our
modified ENAD framework improve the metrics to 75.73 and 82.29. The results are not as
good as those in gradient-based attacks, but compared with stand-alone detectors, these
improvements show that the ensemble of detection algorithms and base DNN models
has brought substantial benefits. In general, the ensemble framework has the potential to
perform very well in RSI recognition for optical configuration.

In terms of results in MSTAR, the SAR dataset of target recognition, the values of
output are generally lower than those of UCM and AID. The performances of the ensemble
model are decreasing with the five best out of eight results. One possible reason for this
phenomenon may lie in that the channel of SAR RSIs is 1 and most of an RSI in MSTAR
is background without useful information, which inhibits the detector from extracting
representative features except the target itself. Nevertheless, the detection of gradient-
based attacks remains at a high level, with the AUPR and AUROC at around 85. The
highest value comes from the BIM attack with 87.04 and the lowest is from the Deepfool
attack with 73.60. The Deepfool and C&W attacks are still challenging situations with more
imperceptible perturbations. In Deepfool, the results from the ensemble model are even
lower than the stand-alone detector KDE, and in C&W, it performs at almost the same
level as MD. Therefore, in such a case, an ensemble framework is not recommended, and
it is worthwhile to further modify the ensemble model for a better detection in the SAR
recognition dataset, especially for very imperceptible noise in the digital domain.
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5. Conclusions

Stability and reliability are significant factors in the working process of modern UAVs
with DNN-based visual navigation and recognition systems. However, there exists severe
adversarial vulnerability when performing scene and target recognition tasks. We build a
threat model when attackers maliciously access the communication link or place physical
adversarial camouflage on targets. In the scenario, considering that AT is not adaptive
for the resource-limited edge environment like UAVs and single adversarial detectors
not performing well in reactive defense, we exploit the different mechanisms of feature
extractions and weak adversarial transferability between the two mainstrean DNN models,
CNN and transformer, to build deep ensemble models for both proactive and reactive
adversarial defense only with base DNN models for the RSI recognition task. In addition, a
one-stop platform for conducting adversarial defenses and evaluating adversarial robust-
ness for DNN-based RSI recognition models called AREP-RSIs is developed, which can
be edge-deployed to achieve real-time recognition and greatly facilitate designing more
robust defense strategies in the remote sensing field for future research.

To evaluate the effectiveness of the two ensemble strategies, a series of experiments
are conducted with both optical and SAR RSI datasets. We find that an ensemble of
ResNets and ViTs can yield very satisfactory results in recognizing and detecting adversarial
examples generated by gradient-based attacks such as FGSM and BIM. In proactive defense,
compared with the three other popular defense methods, the ensemble can be more stable
in different configurations. In reactive defense, our ensemble model integrates the scoring
values from multiple detection algorithms and confidence scores from different base models,
performing much better than stand-alone detectors in most experimental settings. Even
though the proposed model does not perform as well on some attacks of SAR datasets, this
ensemble strategy has shown the favorable potential to improve detection rates with the
DNN models trained for RSI recognition.

In our future work, we will further optimize both of the deep ensemble frameworks,
including exploring the defensive effectiveness against other types of adversarial attack
in the RSI recognition task, replacing the current DNNs in the ensemble with more light-
weight network architectures to suit the edge environment better and making the models’
weights learnable during the training time to find the best combination. Therefore, as the
first exploration of a deep ensemble method against adversarial RSIs in resource-limited
environments, we need to conduct more experiments and report them in our next article.
Finally, we will deploy the two deep ensemble models and AREP-RSIs on the edge devices
to truly achieve a practical application.
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Abstract: Wildfires are one of the major disasters among many and are responsible for more than
6 million acres burned in the United States alone every year. Accurate, insightful, and timely
wildfire detection is needed to help authorities mitigate and prevent further destruction. Uncertainty
quantification is always a crucial part of the detection of natural disasters, such as wildfires, and
modeling products can be misinterpreted without proper uncertainty quantification. In this study,
we propose a supervised deep generative machine-learning model that generates stochastic wildfire
detection, allowing fast and comprehensive uncertainty quantification for individual and collective
events. In the proposed approach, we also aim to address the patchy and discontinuous Moderate
Resolution Imaging Spectroradiometer (MODIS) wildfire product by training the proposed model
with MODIS raw and combined bands to detect fire. This approach allows us to generate diverse
but plausible segmentations to represent the disagreements regarding the delineation of wildfire
boundaries by subject matter experts. The proposed approach generates stochastic segmentation
via two model streams in which one learns meaningful stochastic latent distributions, and the other
learns the visual features. Two model branches join eventually to become a supervised stochastic
image-to-image wildfire detection model. The model is compared to two baseline stochastic machine-
learning models: (1) with permanent dropout in training and test phases and (2) with Stochastic
ReLU activations. The visual and statistical metrics demonstrate better agreements between the
ground truth and the proposed model segmentations. Furthermore, we used multiple scenarios to
evaluate the model comprehension, and the proposed Probabilistic U-Net model demonstrates a
better understanding of the underlying physical dynamics of wildfires compared to the baselines.

Keywords: wildfire detection; generative machine-learning; stochastic modeling; remote sensing;
segmentation; uncertainty analysis

1. Introduction

Wildfires are one of the necessary dynamic components of terrestrial ecosystems,
and they provide significant ecological benefits [1,2]. Natural wildfires offer significant
ecological benefits through promoting forest rejuvenation, nutrient cycling, and habitat
diversity, all of which contribute to the overall health and resilience of ecosystems [3].

However, it is important to acknowledge the growing trends in wildfire size, fre-
quency, and intensity, which are largely influenced by human activities and interventions.
Factors such as wildfire suppression efforts and urban/wildlife encroachment have con-
tributed to increases in wildfire size, frequency, and intensity [4,5]. These anthropogenic
influences have transformed wildfires into a global problem in recent decades [2,6]. Conse-
quently, wildfires have emerged as one of the most destructive natural hazards, with severe
consequences for both human and ecological systems.
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The scale of devastation caused by wildfires is alarming. In the United States alone,
wildfires have burned over 6 million acres of land [7], while globally, the figure exceeds
1 billion acres [8]. These staggering numbers underscore the urgent need for effective
wildfire management strategies, enhanced understanding of fire behavior, and improved
decision-making processes to mitigate the devastating impacts of wildfires on communities,
ecosystems, and economies. By leveraging advanced technologies, such as remote sensing,
data analytics, and predictive modeling, researchers and practitioners can gain valuable
insights into wildfire dynamics and develop proactive measures to reduce risks and enhance
resilience in fire-prone regions.

Preventive and mitigative decision-making and proper resource management are tied
to the availability of insightful, accurate, and timely wildfire monitoring, along with a
deep understanding of wildfire dynamics. For this reason, wildfire detection is an active
research field focusing on understanding wildfire’s complex processes and correlated
factors (e.g., fuel load and structure, vegetation health and types) [9–11]. Many studies
have been conducted to improve the accuracy and detection latency [12–15] for the benefit
of acute and agile decision-making. Wildfire studies can be categorized into two main
directions: (1) deterministic and (2) stochastic models. Deterministic models are a category
of simulation that assumes the simulation process is fully resolved and the simulations can
be conducted with negligible errors [16]. Many studies use such an assumption to address
this problem using deterministic tools [17–19]. For instance, Toan et al., 2019 [18] developed
a deterministic machine-learning model that uses geostationary satellites (GOES-16) as
input to detect wildfires at the pixel level. The paper reports robustness against different
wildfire types and adversarial conditions. In another study, Sayed et al., 2019 [19] created
a wildfire dataset from satellite imagery and used a feed-forward neural network and
Support Vector Machine (SVM) to detect wildfire events. Although deterministic models
can solve complex highly non-linear scenarios, they are still insufficient in fully resolving the
process behaviors [20]. Additionally, deterministic models are limited from the uncertainty
quantification perspective [13,21,22].

Stochastic models, as opposed to deterministic models, acknowledge the presence of
unresolved subprocesses and seek to incorporate them into the modeling framework. These
stochastic approaches introduce randomness into the inference process, resulting in varying
outcomes even under identical conditions. This variability gives rise to a distribution of
possible outcomes, providing a comprehensive view of the wildfire segmentation. Such
stochastic models prove to be well-suited for wildfire analysis due to their ability to capture
the inherent uncertainty and complexity associated with these natural phenomena [23,24].
By considering multiple plausible generated outcomes, stochastic models offer informative
insights into the characteristics of potential wildfire patterns and aid in assessing the
uncertainty and variability associated with the segmentation results.

The modeling characteristics of stochastic models enable a more comprehensive un-
derstanding of the inherent uncertainties and complexities associated with wildfires [25,26].
By considering the variability and uncertainty in the data, stochastic models can capture
the inherent stochasticity in wildfire processes and provide valuable insights into the
spatial dynamics of wildfire events. This is important in wildfire analysis as it allows
for the exploration of various scenarios and the assessment of the likelihood of different
outcomes. Moreover, stochastic models facilitate probabilistic-based decision-making pro-
cesses, enabling more informed and robust wildfire management strategies. The utilization
of stochastic models in wildfire analysis has shown promising results in improving our
understanding of fire behavior, predicting fire spread patterns [25,26]. Through the in-
corporation of stochastic modeling approaches, we can enhance our ability to effectively
understand and mitigate the risks associated with wildfires, ultimately contributing to
more resilient and sustainable fire management practices [25].

Additionally, wildfire ground-truth segmentations are arbitrary and/or noisy to some
level, due to human labeling, instrument differences, and other artifacts, affecting the
wildfire segmentation shapes. A good example of the wildfire discrepancies can be seen
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in the comparison of MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) fire
radiative power products [27]. Even subject matter experts (SMEs), assigned to wild-
fire delineation tasks, often disagree on the active fire’s spatial extent. These plausible
but discrepant takes from the same events prompt a different look at wildfire detection
where wildfire segmentations are considered a distribution of events instead of a single
unified segmentation.

With the advent of terrestrial and atmospheric remote sensing, mainly supported
by satellite and aviation platforms, the means to monitor and detect wildfires have been
more accessible [28]. Advances in observation sensors, and specific enhancement of spatial,
temporal, and spectral resolution, allow more in-depth studies and reveal some of the
unknown dynamics of fires such as holdover fires [28,29]. However, with the increase in the
number of satellites/aviation missions, and the increase of retrieved information, efficient
and effective land management through remote sensing has been challenging [15].

Machine learning proposes an opportunity to extract useful information from a large
volume of remote sensing datasets. Unsupervised methods are popular for such processes
due to generally limited labels for remote sensing in Earth science. Methods such as Auto-
Encoders (AEs) are widely used for such tasks where the network is an encoder–decoder
architecture and the model aims to learn a compressed representation of the data with
minimum information loss [30]. The main issue of these deterministic models in image-
to-image translation is their loss of resolution problem. The encoder part of the model
subsamples the spatial information to compress the data and due to such an operation,
the decoder is not able to recover the spatial information effectively [31,32]. To remedy this
issue, [32] proposed U-NET which is encoder–decoder architecture with skip-connections in
all spatial resolution levels from encoded activations to the corresponding decoding layers
to preserve the spatial information. Despite the wide applications of AEs and U-NETs, they
are not capable of learning distributions around events which limits their expressibility
of data. Generative models such as variational inference methods enable characterizing
stochastic behaviors in data [33], such as ones in wildfire processes.

Variational Auto-Encoders (VAEs) are among the most popular unsupervised varia-
tional inference techniques in machine learning. We propose a supervised version of VAEs,
developed by [34], where the model consists of four submodels: (1) prior network in charge
of learning the latent prior distribution of input data, (2) posterior network in charge of
learning the latent posterior distribution of input and target data, (3) U-NET network in
charge of feature extraction of inputs, and (4) Combination network that uses the U-NET
features and samples from latent distribution to generate stochastic wildfire segmentations.

The main contributions of this work are: (1) developing a stochastic machine-learning
model with accurate and fast probabilistic inference on target wildfire segmentation, (2) con-
ducting uncertainty quantification by drawing a significant number of samples, and (3)
performing what-if scenarios to understand the impact of inputs variability.

The rest of the paper is structured as follows: Section 2 presents the methodology
and proposed model, Section 3 shows the obtained results, uncertainty quantification, and
comparison with baseline along with discussions, and Section 4 focuses on the conclusion
and summary of findings.

2. Methodology

2.1. Variational Autoencoder

To gain a comprehensive understanding of the proposed methodology, it is impera-
tive to establish a foundational understanding of variational autoencoders (VAEs). VAEs
represent a key component in elucidating the intricacies of the proposed approach. Vari-
ational autoencoders (VAEs) are powerful unsupervised generative models that combine
the concepts of autoencoders and variational inference. They are designed to learn a low-
dimensional latent space representation of complex high-dimensional input data. The
latent space is a continuous multivariate distribution that captures the underlying structure
and variations within the data. VAEs consist of two main components: (1) an encoder
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and (2) a decoder. The encoder maps input data into the latent space, while the decoder
reconstructs the data from the latent space back to the original input space.

In VAEs, instead of directly encoding input data into a single point in the latent repre-
sentation, the data is encoded into probability distributions over the latent variables [35].
This probabilistic representation allows for more flexibility and uncertainty modeling. It
enables VAEs to not only reconstruct the input data but also generate new samples by sam-
pling from the learned probability distributions in the latent representation and decoding
them using the decoder network.

The fundamental idea underlying VAEs is to approximate the input data distribution
(i.e. marginal likelihood) noted by Pθ(x). VAEs achieve this goal by maximize the evidence
lower bound (ELBO), which serves as the objective function during the training process
(1). The ELBO consists of two main components: the reconstruction loss, which measures
how well the VAE can reconstruct the input data, and the regularization term that en-
courages the latent space to adhere to a predefined prior distribution, often a multivariate
Gaussian distribution. By maximizing the ELBO, VAEs achieve a delicate balance between
accurately reconstructing the input data and regularizing the latent space to follow the
prior distribution.

log Pθ(x) ≥ L(θ, φ; x) = EQφ(z|x)
[
− log Qφ(z | x) + log Pθ(x, z)

]
(1)

Equation (1) can be re-written as equation below with the ELBO loss on left. Right hand
side of the equation presents the regularization term, called Kullback-Leibler divergence,
and reconstruction term.

L(θ, φ; x) = −DKL

(
Qφ(z | x)‖Pθ(z)

)
+EQφ(z|x)[log Pθ(x | z)] (2)

DKL

(
Qφ(z | x)|Pθ(z)

)
term represents the Kullback-Leibler (KL) divergence between

the posterior distribution Qφ(z | x) and the prior distribution Pθ(z). It measures the
discrepancy or difference between these two distributions. EQφ(z|x)[log Pθ(x | z)] represents
the expected log-likelihood of the reconstruction, where x is the input data and z is a latent
variable sampled from the posterior distribution Qφ(z | x). It measures how well the VAE
can reconstruct the input data given a sampled latent variable.

This regularization process encourages the latent space of the VAE to capture mean-
ingful and continuous representations of the data. It facilitates various tasks, including
data generation and interpolation, by ensuring that similar input data points are mapped
to nearby regions in the latent space. As a result, VAEs provide a powerful framework for
learning complex data distributions and exploring the latent space in a probabilistic manner.

VAEs focus on unsupervised learning and aim to learn meaningful representations of
the input data by modeling the underlying probability distributions. Probabilistic U-Net
extends the variational capabilities of VAEs to supervised learning and create possibilities
to perform tasks such as segmentation in variational context.

2.2. Proposed Approach

Image segmentation is the process of identifying and isolating objects or features of
interest in input images. One of the commonly used techniques for the segmentation of
instances is the U-NET model, initially developed for biomedical image segmentation but
also applicable to other fields such as Earth sciences and space exploration. U-NET is a
deep convolutional neural network that performs image-to-image translation by taking
an image as input and generating a segmentation map as output. The model is trained
using supervised learning, which involves providing accurate segmented images to train
the network to map input images to their corresponding segmentations. Despite the
impressive performance of U-NET in image segmentation tasks, its deterministic nature
poses a limitation. The mapping from input images to output segmentation maps is fully
deterministic and fails to consider sources of uncertainty and stochasticity, which can lead
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to overfitting and poor generalization to new data. Moreover, the deterministic nature of U-
NET limits its ability to perform “what-if” analysis and provide probabilistic segmentations.

Kohl et al. [34] proposed a novel Probabilistic U-Net model for image segmentation
that combines the U-NET with a Conditional Variational Auto-Encoder (CVAE) [36,37]. The
CVAE framework allows the model to generate plausible hypotheses and explore “what-if”
scenarios. The architecture of the proposed model is depicted in Figure 1. Specifically,
the U-NET generates segmentations that are conditioned on the samples drawn from
the latent feature space of the VAE. This low-dimensional space captures the range of
possible segmentation variations and can be used to evaluate “what-if” scenarios during
the evaluation phase. By conditioning the segmentation generation on the latent space, the
model can produce multiple segmentation maps for a single input image, corresponding to
different regions of the latent feature space that are sampled. According to the authors, this
capability enables the model to “learn hypotheses that have a low probability and to predict them
with the corresponding frequency” (Kohl et al., 2018).

Figure 1. Graphical illustration of the proposed Probabilistic U-Net framework. The inputs are NDVI,
NDVI difference with long-term NDVI, and MODIS MCD43A4 channels for Land/Cloud/Aerosols.
(a) presents the training scheme where the prior network encodes inputs and the posterior network
encodes the inputs and target data together into multivariate Gaussian distributions. The samples
from the unified multivariate Gaussian distribution are concatenated with U-Net outputs to produce
stochastic events of target data. (b) demonstrates the inference scheme where samples are drawn
from the prior network.
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The output of the U-NET (the green block) and the drawn sample from latent space
(the blue block labeled as z) are concatenated and passed to the red block F , which
generates the corresponding segmentation Si = F ( fU-NET(X, θ), zi; ψ), where Si represents
the segmentation corresponding to the latent space sample zi, and θ and ψ are the model
parameters of the U-NET model and the F , respectively. The model is trained using
two objectives, namely (1) generating accurate wildfire segmentation from the input data
and (2) generalizing well to unseen or rare scenarios. The model is enforced to meet the
first objective by minimizing the supervised cross-entropy loss between the generated
segmentation, S(X, z), and the ground truth, Y. The model generalizes its understanding
by minimizing the Kullback–Leibler divergence between the prior, P(z | X), and posterior,
Q(z | Y, X), distributions of the variables in the latent feature space. Thus, the total loss
function is a combination of the two losses as follows:

L(Y, X) =Ez∼Q(.|Y,X)

[
− log P(Y | S(X, z))

]
+

βKL
[
Q(x | Y, X)||P(z | X)

] (3)

The parameter β serves as a hyper-parameter that governs the extent to which the
KL-divergence term, also known as the regularization term, influences the model’s output.
The model (illustrated in detail in Figure 2) is trained end-to-end Hyper-parameter opti-
mization was performed using logarithmic scaling from 10−6 to 10−3 and the optimum
value for β is 0.0001.

2.3. Baseline Methods

To compare the performance of our proposed approach and evaluate its capabilities
in generating consistent and contextual information, we developed two baseline methods
with the similar stochastic nature. These baseline models are similar to the proposed
model in capturing distributions over multi-modal segmentation. The introduced models
are designed to accommodate the similarity in network architecture and to investigate
the nature of stochasticity. By developing these baselines, we were able to analyze the
effect of each stochasticity approach on (1) learning the underlying distribution of the
wildfires, and (2) the performance of the network architectures under similar conditions.
The baselines will shed light on the efficacy of the different stochasticity similar varieties of
U-Net.

2.3.1. U-Net with Dropout

Dropout in a U-Net architecture can perform as a special case of the delta rule in which
we introduce noise in the transmission of information [38] by randomly masking weights
of the network. Dropout is presented as an especial case of delta rule called stochastic
delta rule [39] in which each weight in the model is assigned as a random variable from a
Gaussian distribution with the mean μwij

and standard deviation of σwij
[38]. Dropout, as an

special case of stochastic delta rule, introduces a form of regularization that aids in escaping
poor local minima. By randomly deactivating a subset of neurons during each training
iteration, dropout prevents the network from relying too heavily on specific neurons or
features. This selective deactivation encourages the remaining neurons to compensate and
learn more robust representations, leading to a broader exploration of the weight space and
increasing the odds of finding the optimum solution [38]. Additionally, keeping the dropout
in the inference process will introduce stochasticity by generating results from a randomly
selected sub-network and will result in an approximation of posterior distribution [40].
Dropout obtains these advantages by removing hidden neurons according to a Bernoulli
distribution with a probability parameter p. The dropout probability of the baseline model
is set to be p = 0.3 meaning that at each pass of the network, only 70% of the neurons will
be activated via a random selection.
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Figure 2. Network Architecture of Probabilistic U-Net consisting of three main networks: U-Net (plus
a merge sub-network), prior network, and posterior network. The Convolution Blocks in the blue
hidden layers consist of three sub-blocks of 2D convolutional layers with the same size features and
kernel size and ReLU activation. The darker blue layers in U-Net represent the merger sub-network
where the samples from latent distribution are concatenated with U-Net output and flow through the
merger network to generate wildfire masks.

2.3.2. U-Net with Stochastic Activations

The concept of stochastic non-linear activations was first proposed by [41] to improve
models by resolving the degenerative behavior of deterministic activation functions. An-
other study by Shridhar et al., 2020 [42] introduced a probabilistic activation definition
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which makes the model behavior stochastic. The activation function, regardless of its type,
will gain stochasticity by introducing Gaussian noise to its value [42]. In this architecture,
instead of using a deterministic activation (e.g., ReLU), a Gaussian noise trick will apply
perturbation to the forward and backward processes Figure 3. The parameters of the Gaus-
sian perturbation can stay fixed or trained as a trainable parameter via backpropagation.
Obtained from several experiments, the optimum sigma is found to be 5.

Figure 3. Rectified Linear Activation (ReLU) and stochastic ReLU. σ represents the standard deviation
of the Gaussian noise.

2.4. Statistical Metrics

We have used multiple statistical metrics to evaluate the segmentation quality and
assign lower and higher bounds for multiple draws of the same events. In particular,
we used

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score =
2 TP

2 TP + FP + FN
(6)

Jaccard Index =
TP

TP + FP + FN
(7)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false
negative, respectively. Precision, Recall, and F1-score are popular metrics that provide
valuable Jaccard Index, also known as Intersect of Union (IoU), which is a good measure to
calculate the overlap of predicted and target wildfire segmentation. Due to the stochasticity
of each sample, we represented the statistics with lower and upper bounds of performance
for each metric.

3. Experiments

In this section, we present the segmentation performance of the proposed method
along with the two baselines, but first, we introduce the dataset used in this study and then
explain the statistical metrics used in comparisons.

3.1. Dataset

In this study, we focus on the discrepancies in the fire products of MODIS constellation
and VIIRS instruments onboard the joint NASA/NOAA Suomi National Polar-Orbiting
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Partnership (Suomi NPP) and NOAA-20 satellites [43]. We aim to frame this problem to
(1) offer an alternative fire product to resolve the MODIS’ patchy and inconsistent segmenta-
tion, and (2) develop a distribution-over-event-based model to obtain epistemic uncertainty
quantification and run what-if scenarios on input variables. For this purpose, we have
collected MODIS MCD43A4, a daily product with 250 m spatial resolution, and collocated
VIIRS fire product, with a daily 375 m spatial resolution, as target data. We used the
Land/Cloud/Aerosol boundaries and properties channels with bandwidths of 620-670,
841–876, 459–479, 545–565, 1230–1250, 1628–1652, 2105–2155 nanometer (Table 1). We added
the Normalized Difference Vegetation Index (NDVI) as a reliable proxy for estimating the
fuel loads available for fires [44,45] using the following equation:

NDVI =
NIR − RED

NIR + RED
(8)

The NDVI ranges from −1 (not vegetation) to 1 (healthy vegetation) and is obtained
from near-infrared (841–876 nm) and red (620–670 nm) bands. Multiple alternatives to
NDVI have tried to address some of its issues using additional band [46,47]; however, due
to the less noise sensitivity of NDVI and wide application of NDVI in the literature [48–51],
NDVI has been considered to be the reference index for fuel-load analysis. Despite the
usefulness of NDVI, it cannot be useful directly for fire detection due to the location
dependency of NDVI values. For instance, NDVI values can be lower in arid zones
compared to subtropical regions, but still, wildfires happen in subtropical regions due
to abnormally low vegetation moisture. To tackle this issue, relative NDVI is calculated
by subtracting the NDVI of each day from the mean NDVI of the same location for the
whole period of study. This will give us a sense of abnormal vegetation conditions potent
for wildfires.

Table 1. List of data used as inputs in the model.

Input Bandwidth

Land/Cloud/Aerosols Boundary 620–670
841–876

Land/Cloud/Aerosols Properties

459–79
545–565

1230–1250
1628–1652
2105–2155

NDVI N/A

NDVI Derivation N/A

The target fire dataset is obtained from thermal anomalies/active fire products with
two fire-associated properties; brightness temperatures (in Kelvin), and fire radiative power
(in Megawatts) among others. The dataset is provided in individual point locations with
a spatial resolution of 375 m which is converted into gridded maps using the nearest
neighbor method.

The training, validation, and testing sets consist of patches of data described above
over wildfire events detected across the Continental United States. We shifted patches
randomly to generate augmented patches and prevent the artifact of always having wildfire
pixels in the center of the patch. The data were collected and patched for 2018 and filtered
to only keep events with more than 20 pixels of wildfire inside. We used a 60-20-20
percentage for training, validation, and testing to obtain the hyper-parameter values. Then
we retrained the models using training and validation sets and then evaluated the unbiased
estimate of the performance using the testing set.

To generate multiple inference segmentations from the same input data, we feed
the inputs to the U-NET model to obtain relevant spatial features. Simultaneously the
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inputs are fed into the prior network and obtain latent space samples (z in Figure 1b).
Combining the U-NET features with each sample z will provide a unique variation of
corresponding segmentation. Multiple samples drawn from prior networks will provide
multiple segmentations for that specific event.

3.2. Results

Throughout this section, we focus on evaluating the proposed Probabilistic U-Net
model and compare the performances to the two baseline models: Dropout U-Net and
Stochastic ReLU U-Net. We will first present a visual comparison benchmark for wildfire
detection and quantify the visual uncertainty, and then present a more comprehensive
performance using the metrics discussed in Section 3.3. Figure 4 consists of two independent
wildfire incidents that describe two different wildfire dynamics. Each incident ((a) and (b))
demonstrates the visual consistency of the Probabilistic U-Net and the two baselines by
drawing five random samples for a specific event. In Figure 4a, first five columns from left
for the first, second, and third rows present the samples from Dropout U-Net, Stochastic
ReLU U-Net, and Probabilistic U-Net models, respectively. Overall, all samples from all
models are consistent with the target segmentation (last row, far left column). It is noticed
that Dropout U-Net has less spatial coherency compared to the other two. Stochastic ReLU
U-Net detects consistent wildfire in the circular area but misses the bottom left region of fire.
The Probabilistic U-Net on the other hand shows a diverse range of detections capturing
both patches of circular and bottom left fires. Comparing the detected wildfires by all
models with NDVI indicates that all models understand the dynamics of vegetation and
wildfire, where fire spreads in the surrounding of low vegetation (burned area). The NDVI
deviation from the historical mean is very similar to the current NDVI in terms of burned
area shape and size meaning the NDVI has not significantly changed, but the region is still
experiencing wildfire activities. The far right column illustrates the spatial stochasticity of
each model from 1000 independent samples. The Dropout U-Net model demonstrates low
confidence in the bottom left region and left semi-circle of the circular region. Stochastic
ReLU U-Net is confident in its detections and does not anticipate any fire in the bottom left
region. The Probabilistic U-Net model produces a reasonable uncertainty map, covering
most of the observed region with high confidence; however, the model is uncertain about
the wildfire shape, specifically in the bottom left region.

Figure 4b demonstrates second independent incident where, similar to Figure 4a, the
first, second and third rows belong to Dropout U-Net, Stochastic U-Net and Probabilistic
U-Net, respectively. Performing similar to Figure 4a, all the segmentations are consistently
close to target mask (bottom row, left column). Dropout U-Net presents higher variability
compared to the other two models and result in higher uncertainty, especially in the wildfire
border areas. Stochastic U-Net detects a more consistent segmentation pattern with less
variability. It is noteworthy that Stochastic U-Net segmentations are undercomplete and do
not fully cover the target segmentation area. Probabilistic U-Net demonstrates coherent
patterns as target data, with uncertainty in the boundary of burning regions. The incident is
slightly different in dynamics compared to Figure 4 due to NDVI behavior. In this incident,
the NDVI deviation from historical mean is different, meaning the area is lossing vegetation
health quality due to the wildfire.

Figure 5 indicates the statistical performance of the three models over 1000 runs. We
present the model performances for the testing set (including 1500 non-overlapping wildfire
events) in box plots to incorporate the uncertainty level for each model. The precision
statistics show similar sentiment to the visual samples, where Dropout U-Net under-detects
the fire pixels (causing lower True Positives) with high variability, Stochastic ReLU U-Net
detects a significant area of wildfire with high confidence and Probabilistic U-Net that has
moderate detection capability with a similar range of Dropout U-Net variability. However,
the results shift in the recall, showing a higher range for Probabilistic U-Net compared to
the baselines. This stems from the lower FN values of this model, compared to the other
two baselines. As a result of this, the F1-score which is a harmonic mean of precision and
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recall shows higher performance for the proposed Probabilistic U-Net compared to the
baselines. Lastly, the Jaccard index or IOU indicates higher agreement between the target
segmentations and the Probabilistic U-Net segmentation variants. Stochastic ReLU U-Net
is the second-best model with low variability, and the lowest IOU belongs to the Dropout
U-Net model.

Figure 4. The figure demonstrates two independent wildfire incidents (subplot (a,b)) consisting
of 5 drawn samples (first 5 columns) from the proposed Prob. U-Net (first row) and the baseline
models (second and third rows) along with spatial uncertainty quantification for the same event
using 1000 runs (last column). The last row, shows the target segmentation, corresponding NDVI,
and NDVI deviation from historical, from left to right, respectively.
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Figure 5. Statistical comparison between Probabilistic U-Net, Dropout U-Net, and Stochastic ReLU
U-Net over 1000 runs.

3.3. Discussion

Furthermore, we investigated the semantic variation of the models by changing the
dynamic of NDVI. In this experiment, we aimed to better understand the grasp of each
model in understanding the NDVI dynamics. The experiments continued to investigate the
physical comprehension of each model by changing NDVI and observing the changes in
wildfire segmentations. We follow the following reasonings: (1) an increase in NDVI will
not trigger wildfire (at least not as severe as before), (2) a spotty decrease in NDVI allows
the wildfire to spread toward lower NDVI (unhealthy vegetation) area, (3) a significant
decrease in NDVI in a region will not provide enough fuel for the fire to spread. We tested
these hypotheses on the sample data we had in Figure 6. In the first three rows, we have
the model detections from original NDVI values which are similar to the samples shown
in Figure 4. The second three rows demonstrate the model responses to an increase of
NDVI within and surrounding low NDVI area (burned region). Based on the results, we
see that Dropout and Probabilistic U-Nets will not detect a burning segment and Stochastic
ReLU U-Net will detect smaller segmentations. The third three rows investigate the idea of
sparsely lowering the vegetation in regions close to burning scars. The results show that
Dropout U-Net and Stochastic ReLU U-Nets will not capture the ignitions toward new
places, especially in the bottom left region. However, Probabilistic U-Net is understanding
spread reasoning and detecting segments in the bottom left area. Lastly, we show significant
NDVI reduction for a large area in the last three rows. The NDVI decrease mainly impacts
the bottom left region and spotty locations in the circular segment region. All models
are correctly ruling out the possibility of wildfire in the bottom left region. Dropout U-
Net has difficulty understanding the circular shape affected by spotty NDVI decreases.
Stochastic ReLU U-Net is persistently detecting the circular segment, but Probabilistic
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U-Net has slightly adjusted the circular segment according to the spotty changes. It is
noteworthy that the model hyperparameters (σ, β, and dropout rate for Stochastic ReLU,
Probabilistic, and Dropout U-Nets) are selected based on best precision and recall. It seems
that Stochastic ReLU U-Net performs better under lower variability and deteriorates under
higher σ values.

Figure 6. Empirical investigation of model comprehension from NDVI dynamics. The first three rows
are the Stochastic ReLU, Dropout, and Probabilistic U-Net without a change in NDVI. The second
three rows are the same order of models with greener NDVI within and in the surrounding of the
bottom leaving a burned scar. The third three rows reduce NDVI sparsely, especially in the bottom
left region. The last three rows present a significant decrease in NDVI in the vicinity of the bottom
left region and spotty locations close to the circular scar.
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4. Conclusions

In this study, we proposed a stochastic machine-learning approach that learns a latent
distribution of wildfire events in a supervised manner and addresses the uncertainty
quantification and inter-dataset discrepancies. We investigated the proposed method by
segmenting active wildfires using the seven bands from MODIS and two derivatives (NDVI
and historical deviation of NDVI) as inputs. The proposed model was compared with
two stochastic baseline machine-learning models called Dropout U-NET, a U-NET with
dropouts in training and test phases, and Stochastic ReLU U-NET, a U-NET with Stochastic
ReLU activations. It was discovered through the conducted experiments that Probabilistic
U-Net is more accurate and flexible compared to the other two models. The Stochastic
ReLU U-Net seems to perform more accurately with lower variability, and Dropout U-Net
is less accurate but demonstrates a wider range of variability. Additionally, we performed
a scenario-based experiment to analyze the impact of physical changes on the response of
the models. The probabilistic model showed a more comprehensive understanding of the
physical relationship between NDVI and wildfire. However, the other two baseline models
demonstrated partial alignment with the scenarios.
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Abstract: Geological models are essential components in various applications. To generate reliable
realizations, the geostatistical method focuses on reproducing spatial structures from training images
(TIs). Moreover, uncertainty plays an important role in Earth systems. It is beneficial for creating
an ensemble of stochastic realizations with high diversity. In this work, we applied a pattern
classification distribution (PCD) method to quantitatively evaluate geostatistical modeling. First,
we proposed a correlation-driven template method to capture geological patterns. According to the
spatial dependency of the TI, region growing and elbow-point detection were launched to create
an adaptive template. Second, a combination of clustering and classification was suggested to
characterize geological realizations. Aiming at simplifying parameter specification, the program
employed hierarchical clustering and decision tree to categorize geological structures. Third, we
designed a stacking framework to develop the multi-grid analysis. The contribution of each grid was
calculated based on the morphological characteristics of TI. Our program was extensively examined
by a channel model, a 2D nonstationary flume system, 2D subglacial bed topographic models in
Antarctica, and 3D sandstone models. We activated various geostatistical programs to produce
realizations. The experimental results indicated that PCD is capable of addressing multiple geological
categories, continuous variables, and high-dimensional structures.

Keywords: geostatistical modeling; multiple-point statistics; uncertainty quantification; subglacial
topographic model; hydrological model

1. Introduction

Geological models play an important role in a wide range of real-world applications.
Recent developments in the Earth surface dynamics have highlighted the importance of
high-quality hydrological models [1]. A set of stochastic realizations comprises funda-
mental materials to express the spatiotemporal evolution of delta and flume systems [2,3].
Moreover, there has been increasing interest in the high-resolution subglacial topography
models [4,5]. The roughness of bedrock has a substantial influence on subglacial flow
behaviors in Arctic and Antarctica [6,7]. With the development of computing platforms,
multiple-point statistics (MPS) has gained considerable attention [8,9]. With the aim of
creating realistic models, MPS concentrates on the relationship between one target point
and neighboring points. Viewing the training image (TI) as a prior material, the spatial
patterns are constantly extracted and reproduced in the simulation grid (SG). With the
objective of improving the simulation quality as well as computational efficiency, a range
of image-processing and machine-learning techniques have been introduced into the MPS
framework [10–12]. For example, spatial correlation is used to create an adaptive template
and conserve patterns [13,14]. In order to save running time, clustering is a feasible way to
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organize patterns in TI and find representatives [7,15–17]. The medoid of each group has a
high rank in the downstream procedure. In addition, multi-grid analysis is employed to
capture spatial structures across different resolutions [18,19]. During the MPS simulation,
the long-range connectivity is regenerated before the fine-grain characteristics. In addition,
the development of the generative adversarial network (GAN) technique has received
considerable attention in the geostatistics community [20,21]. Based on a large amount of
TIs, two neural networks are simultaneously trained through an adversarial competition.
A generator network attempts to produce an image associated with similar characteristics
to TIs. By contrast, the discriminator is responsible for distinguishing real and simulated
models. The expanding applications of GAN include geological facies [22,23], probability
inversion [24], and porous media [25].

One major challenge for MPS, GAN, and other TI-based modeling programs is to
quantitatively evaluate simulation quality. Therefore, numerous descriptors have been
presented. As a classical two-point statistics metric, variogram focuses on calculating
the expected squared difference between two points divided by a certain distance [26].
By contrast, the two-point correlation function and the lineal-path function are broadly
used to characterize microstructures [27]. The former concentrates on the probability
that two randomly chosen points have the same material phase. The latter approach is
defined as the possibility that a straight line is entirely in a certain facies. Moreover, the
connectivity functions are devised to compute the probability that two points in SG belong
to the same connected component [28]. While two-point approaches are used in a variety
of applications, a shortcoming is that geometrically and morphologically complicated
structures cannot be finely represented with these methods.

The limitations of two-point statistics motivate researchers to develop high-order
methods. From the geostatistical point of view, there are two variabilities within simulated
realizations: pattern reproduction and spatial uncertainty [29]. On one hand, the core
task of the geostatistical simulation method is to reproduce spatial patterns in SG. This is
favorable for exhibiting consistencies between TI and the generated models. On the other
hand, spatial uncertainty plays an essential role in understanding Earth systems. The use
of a group of stochastic realizations is helpful to represent uncertainty and randomness.
Therefore, competitive methods not only create similar realizations to TI but also enrich
the diversity within generated models. Furthermore, the observation variable is important
prior knowledge in conditional simulations. For example, the borehole interpretation is
directly sampled from the subsurface system [17]. Produced by gound penetrating radar,
the geophysical data describe the trend of the geological structure under investigation [30].
It is necessary to respect conditioning data during geological modeling. These conflicting
objectives create a challenge for simulation programs.

Based on the variabilities mentioned above, multiple-point histogram (MPH) is re-
ported to assess the quality of the unconditional simulation [31]. First, the program extracts
spatial patterns from a geological model. Second, a probability distribution is created
according to the frequency of each pattern. Third, MPH views the difference between
two pattern distributions as a measure of the distance between two geological models. In
particular, Jensen–Shannon (JS) divergence is applied to distinguish two distributions. The
pattern reproduction is expressed by the average distance between the TI and the simulated
realizations. By contrast, the mean distance between the generated models implies the
spatial uncertainty. However, one primary drawback of MPH is the ability to describe
complicated structures. Within the MPH framework, the template is the key to capturing
geological patterns. Since MPH records every possible pattern configuration, the dimension
of the pattern distribution grows rapidly. There is a tradeoff between the running speed
and the evaluation accuracy. On one hand, an extending template is useful for identifying
complex structures. On the other hand, high-dimensional distributions have a negative
effect on the calculational efficiency. It is time-consuming to apply large templates in MPH.

With the purpose of improving evaluation performance, the analysis of distance
(ANODI) was designed by Tan et al. [32]. The technical developments were as follows:
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(1) Patterns in the TI are organized by a clustering method. The medoid of each group
becomes the representative instance. (2) The program classifies patterns in the SG on the
basis of their distances with representative patterns. A cluster-based pattern histogram is
created according to the number of members in each group. (3) Similar to MPH, JS diver-
gence is employed to quantify the difference between two histograms. The program per-
forms multi-dimensional scaling (MDS) to visualize the affinity between geological models.
(4) A multi-grid strategy is utilized to analyze geological structures across difference scales.
The program individually captures long-range structures as well as fine-grain patterns. A
weighted aggregation is conducted to combine JS divergences from several resolutions.

In recent years, ANODI has been used to examine the simulation quality in various
applications. However, two primary concerns are the parameter specification and the
evaluation accuracy. There are three noticeable technical limitations. First, the size of
the template and the number of clusters are two user-defined parameters. Inappropriate
configurations bring uncorrelated and redundant knowledge into the pattern analysis.
Second, the program organizes patterns in the SG by calculating their distances with the
medoid patterns in the TI. Given a TI with complicated structures, a large number of
prototypes are found during the clustering step. It is time-demanding to compare the
patterns and every representative. The time consumption constrains the dimension of the
template and pattern groups. Third, the weight of each resolution is fixed and constant
in the multi-grid analysis. The intrinsic characteristics of the geological structure are not
taken into account.

In this paper, we provide a valuable alternative to quantitatively evaluate geostatistical
modeling and quantify uncertainty. With the objective of improving the evaluation accuracy
and simplifying the parameter specification, a pattern classification distribution (PCD)
program is proposed to compare geostatistical realizations. First, our program applies an
irregular template of adaptive size to extract geological patterns. According to the spatial
correlation in the TI, the template points are sequentially gathered by a region-growing
program. The computer controls the number of conditioning points based on the elbow
point of the entropy function. Second, a clustering-and-classification program is designed
to characterize the geological models. Aiming to customize the parameter setting, we apply
hierarchical clustering to group the training patterns. Our program applies a decision
tree to classify geological patterns and creates a pattern classification distribution from a
geological realization. The similarity between two geological models is defined by the JS
divergence between two distributions. Third, we devise a stacking framework to develop
the multi-grid analysis. To improve the aggregation accuracy, the importance of each grid
is calculated according to the intrinsic characteristics of the TI. A large weight is assigned
to the coarse grid when there is an intensive long-range dependency in the TI.

We conducted four practical applications with the intention of comprehensively exam-
ining the proposed method. In the first test, a benchmark channel model was utilized. We
ran a range of MPS programs to generate hydrological models. MPH, ANODI, and our
PCD are applied to rank the realization sets. Compared with the existing methods, the key
advantage of our PCD is the automatic parameter specification according to the simulation
scenario. The geological models are reasonably distinguished by the proposed method.
Further applications include non-stationary flume realizations, subglacial digital elevation
models in Antarctica, and three-dimensional sandstone models. PCD exhibits a versa-
tile ability to solve multiple geological categories, continuous variables, morphologically
complex structures, and high-dimensional structures.

The rest of this paper is organized as follows. Section 2 establishes the context of
the geostatistical evaluation methods and provides detailed procedures within MPH and
ANODI. Our proposed PCD is explained in Section 3. Section 4 presents four real-world
applications. The experimental results and findings are discussed in Section 5. Finally,
conclusions are drawn in Section 6.
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2. Background of the Geostatistical Evaluation Methods

2.1. Multiple-Point Histogram

Prior to explaining the proposed program, we provide a brief overview of the MPH
and ANODI methods. There are three basic steps within MPH [31]. (1) Based on a geological
model, spatial patterns are extracted by a predefined template. (2) The program records
the frequency of each pattern. The pattern histogram becomes a tool to describe TI and
geological realizations. (3) Jensen–Shannon divergence is utilized to measure the similarity
between two distributions.

The MPH program is illustrated in Figure 1. To simplify the explanation, a template
with five points is applied. As Figure 1a shows, the program visits point a and creates
a pattern p(a) = (Z(a + u1), Z(a + u2), Z(a + u3), Z(a + u4), Z(a + u5)) = (1, 0, 1, 0, 1).
Here, Z(a) denotes the geological state of the point a. The program continuously visits
every available point in TI. In this case, 36 patterns were found.

 

Figure 1. Multiple-point histogram based on a conceptual image. (a) A training image with size
of 8 × 8. There are two geological states within the TI. The first pattern centered on the point a is
highlighted in red; (b) a template with five conditioning points; (c) pattern frequency table; (d) the
resulting multiple-point histogram.

Next, MPH focuses on analyzing patterns and creating a descriptor. Let f1 denote the
frequency of pattern p1. As shown in Figure 1c,d, a pattern frequency table and a histogram
are produced by recording the occurrence of each pattern. The number of possible patterns
is 25 = 32 becuase there are five conditioning points in the template and two geological
categories in TI. Accordingly, the dimension of the pattern histogram is specified as 32.

After counting the frequency of each pattern, MPH regards the distance between
two distributions as a measure of the dissimilarity between two geological models. In
particular, JS divergence is an appropriate way to compare two histograms [33]. Suppose
that there are two distributions P1 =

{
f
(1)
1 , f

(1)
2 , . . . , f

(1)
32

}
and P2 =
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}
.

The JS divergence is defined as follows:
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As mentioned above, there are two variabilities within the geological models: pattern
reproduction and spatial uncertainty. On one hand, the simulation program repeatedly
extracts structures from the TI and reproduces proper patterns in the SG. The consistency
between the TI and the generated realizations plays a key role in the assessment of geologi-
cal modeling quality. On the other hand, uncertainty is a fundamental factor in exploring
the surface and subsurface system. In general, the stochastic simulation method creates
an ensemble of realizations. The distance between two geological realizations should be
sufficiently large to represent uncertainty and randomness. Within the MPH framework,
two variabilities are individually measured by the mean distance. Suppose that there is

177



Remote Sens. 2023, 15, 2708

one training image TI and several geological realizations RE. The pattern reproduction
ability of the geostatistical modeling method is quantified as follows:

diswithin
RE =

1
L ∑

L

l=1 disJS

(
PTI , P

(l)
RE

)
(2)

where L is the number of geological models and P
(l)
RE is the pattern histogram computed

from the l-th realization.
By contrast, the average distance between two geological models becomes a measure

of uncertainty. The computation detail is shown below:

disbetween
RE =

1
L(L − 1) ∑

L

l=1 ∑
L

l′=1 disJS

(
P
(l)
RE, P

(l′)
RE

)
(3)

Next, MPH applies the preceding distances to compare two modeling methods. Sup-
pose that there are two realization sets, A and B. The output ratios are defined as follows:

rbetween
A,B =

disbetween
A

disbetween
B

(4)

rwithin
A,B =

diswithin
A

diswithin
B

(5)

roverall
A,B =

rbetween
A,B

rwith
A,B

(6)

The first ratio rbetween
A,B focuses on the extent of uncertainty. A high value of rbetween

A,B
indicates that set A has greater uncertainty and diversity than set B. In comparison, the
pattern reproduction ability is quantified by rwithin

A,B . A small value of rwithin
A,B reveals that set

A has a close affinity with the TI. The last ratio roverall
A,B summarizes previous two aspects.

The roverall
A,B > 1.0 implies that set A has better quality than set B.
One key limitation of MPH is the tradeoff between the evaluation accuracy and the

running speed. It is worth noting that MPH identifies the relationship between multiple
points. For a geometrically complex structure, an extending template has a substantial
effect on the characterization quality. However, a large template dramatically increases
the number of possible patterns. For example, supposing that a template of 5 × 5 is
used to analyze a TI with two geological categories, the dimension of multiple-point
histogram becomes 225 = 33, 554, 432. It is time-consuming and memory-intensive to
handle high-dimensional histograms. Furthermore, the pattern histogram becomes a
sparse vector when a large template is applied. Numerous zero values not only affect the
effectiveness of JS divergence but also lead to considerable computation costs. Therefore,
MPH generally applies small templates. Morphologically complicated structures cannot be
represented effectively.

2.2. Analysis of Distance

Aiming to overcome the limitations of MPH, Tan et al. proposed the analysis of
distance [32]. Their core contribution was the application of k-means clustering to group
training patterns. Figure 2 provides a conceptual example. Similar to MPH, the first step
in ANODI is to extract spatial patterns from the TI. Using a template with five points,
36 patterns are captured. Next, the program performs k-means clustering to inspect
the underlying proximity within these patterns. The instances with strong similarity
are allocated into one group. Since there is a categorical variable in the TI, Hamming
distance is applied to distinguish between patterns. Moreover, the computer performs
multidimensional scaling (MDS) to facilitate the visualization. In MDS feature space,
one node represents a pattern. Two similar patterns have a small distance in the feature
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space. As shown in Figure 2e, four clusters are detected by the k-means program. Next,
ANODI concentrates on finding the medoid of each group. The medoid is defined as the
pattern closest to the geometrical center of a cluster. In addition, the program records the
size of each cluster. As shown in Figure 2g, a cluster-based histogram of patterns (CHP)
is created. The key benefit of ANODI is the dimension of the pattern distribution. It is
convenient to control the dimension of the pattern histogram by specifying the number of
pattern clusters. The high-dimension issue in MPH is therefore significantly alleviated.

Figure 2. Analysis of distance based on a conceptual image. (a) Training image; (b) template;
(c) pattern dataset. (d) patterns in the MDS feature space. (e) 4 pattern groups created by k-means
clustering; (f) representative patterns; (g) cluster-based histogram created by TI.

Based on the medoid patterns, ANODI attempts to extract the morphological charac-
teristics and rank the geological models. The characterization procedure is composed of
three steps. (1) The patterns are extracted from the geological realizations. (2) The program
classifies the pattern examples according to their distances from the representatives. (3) The
number of member instances in each pattern category is output as a pattern histogram. Next,
JS divergence is carried out to compare two distributions. Within the ANODI framework, a
close similarity between two distributions suggests that there is a strong agreement between
two geological realizations. Moreover, MDS is introduced to visualize the relationship
between realizations. Based on a distance matrix, MDS projects data points into the low-
dimensional feature space. The geological models which show matching structures are close
in the MDS space. The technical details of MDS are elaborated in [1].

In addition, long-range correlations and connectivity are common in geostatistical
simulations. It is difficult to extract long-scale structures in accordance with small templates.
Therefore, the multi-grid strategy is incorporated into the ANODI framework. As shown
in Figure 3, the program creates a pyramid of multi-resolution views. Inspired by MPS,
the coarse grid is recursively generated by subsampling the fine grid. In this conceptual
case, we implement a down-sampling procedure of stride 2. Starting from the bottom-
left corner, the pixels in the fine grid are sequentially checked. The computer removes
every even-numbered row and column to produce a small grid. For complex scenarios, a
Gaussian pyramid and facies-frequency-based methods are favorable to preserve important
geological structures. Let G denote the number of grids. Therefore, one training image
TI can be expanded into a set of multi-resolution grids {TI1, TI2, . . . , TIG}. In the similar
manner, a geological realization RE is extended into {RE1, RE2, . . . , REG}. Based on a
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specified grid g, the computer performs pattern extraction, k-means clustering, and pattern
classification to create a cluster-based histogram P

(l)
RE,g from the realization REg. In a

multi-grid context, the average distances in Equations (2) and (3) are modified as follows:

diswithin
RE,G =

1
L ∑

G

g=1 wg ∑
L

l=1 disJS

(
PTI,g, P

(l)
RE,g

)
(7)

disbetween
RE,G =

1
L(L − 1) ∑

G

g=1 wg ∑
L

l=1 ∑
L

l′=1 disJS

(
P
(l)
RE, P

(l′)
RE

)
(8)

where wg is the weight of the g-th grid. In ANODI, a fixed weight wg = 1/2g is applied.
The high-resolution images and the fine grid are assigned high contributions. There are
two assumptions behind this design. First, that there is less information and variabil-
ity in low-resolution grids. Second, that short-scale patterns are more important than
large-scale structures.

 

Figure 3. Multi-resolution TIs in the multi-grid analysis.

Although a range of practical applications are performed, there are three key technical
limitations in ANODI. (1) The parameter specification is a key step to ensure the evaluation
accuracy. Prior to the pattern-extraction step, the user has to specify the shape and size of
template. Moreover, it is necessary to set the number of groups in the k-means clustering.
An unsuitable setting has a negative influence on the computation quality. (2) It is time-
consuming to generate the cluster-based histogram from the geological realization. In order
to classify patterns, ANODI has to calculate the distance with every representative pattern
in the TI. (3) The multi-grid analysis suffers from the fixed weight. The long-range structure
and connectivity do not receive sufficient attentions.

3. The Key Principles of Pattern-Classification Distribution

3.1. The Correlation-Driven Template-Design Program

The first step in our method is to design a reasonable template to extract geological
patterns. Compared with the two-point statistics method, one key benefit of MPH and
ANODI is the application of a template to explore the relationship between multiple
points. However, these two methods apply a fixed and user-defined template. In order
to improve the modeling quality, there are many adaptive template-design methods in
the MPS community. For example, Honarkhah and Caers (2010) presented a template-
selection method in their distance of pattern (DISPAT) [16]. The entropy is a measure of
the information needed to encode a pattern. The program finds the optimal template size
using elbow-point detection. The key drawback is that the DISPAT template is always

180



Remote Sens. 2023, 15, 2708

square. The program cannot change the shape of the template according to the TI of
interest. It is difficult to address anisotropic structures. By comparison, correlation-driven
direct sampling (CDS) is an applicable way to quantify the contribution of each template
point [14]. At first, the spatial dependency of the TI is analyzed by the correlation coefficient.
With the purpose of removing the effects of noise and geologic cyclicity, CDS employs a
Gaussian function to approximate the correlogram. Next, the weight of each template point
is calculated by the Gaussian function. Nevertheless, CDS cannot automatically control the
number of conditioning points. The template size is a user-defined parameter.

In this work, we combine the strengths of DISPAT and CDS together. An irregular
template of adaptive size is devised to capture patterns. Based on the inherent charac-
teristics of the TI, the computer automatically determines not only the shape but also
the size of the template. Figure 4 provides an example to discuss our correlation-driven
template design program. There are four basic steps. (1) Motivated by CDS, we compute
the correlation coefficient between the template center and each neighboring point. In this
conceptual case, a template with a size of 3 × 3 is employed to extract patterns. In Figure 4b,
the deep purple indicates a strong dependency. Since there are two channels in the TI,
an intensive correlation is presented in the horizontal direction. (2) A region-growing
program is activated to sequentially collect template points. Viewing the template center
as the seed point, we iteratively incorporate the neighboring point with the maximum
correlation into the template. The template points that exhibit strong relationships with
the center are given the highest priority. As shown in Figure 4c, the program creates
several candidate templates with irregular shapes. (3) Our program assesses the template
by means of the entropy. Based on a specified template, a group of patterns are extracted
from the TI. Inspired by DISPAT, the entropy of the pattern distribution becomes a measure
of the information captured by the template. We repeatedly perform steps 2 and 3 until
every template configuration is examined. In this case, an entropy function of the pattern
histogram is displayed in Figure 4d. (4) An elbow-point-detection technique is utilized to
find the optimal parameter. In this work, we apply the profile log-likelihood approach [34].
Let E = {e1, e2, . . . , eN} denote the entropy set. N is the number of template points. For
every instance of entropy, we define two groups: {e1, e2, . . . , en} and {en+1, en+2, . . . , eN}.
Next, the profile log-likelihood function l(n) is defined as:

l(n) = −n log
(

1√
2πσ2

)
∑

n

i=1
(ei − μ1)

2

2σ2 + (n − N) log
(

1√
2πσ2

)
∑

N

i=n+1
(ei − μ2)

2

2σ2 (9)

σ2 =
(n − 1)σ2

1 + (N − n − 1)σ2
2

N − 2
(10)

where μ1 and μ2 are the means of the two groups, respectively. In contrast, σ1 and σ2 are
sample variances. The common scale variance is denoted by σ. Consequently, the position
with the maximum values of l(n) is the optimal choice. In this case, the program specifies
the template size as 4.

3.2. Geological Model Characterization Using Hierarchical Clustering and Decision Tree

Based on the template described above, we extracted a range of patterns from the TI.
A key technical problem is the organization of these training instances. In this work, our
program applies the agglomerative hierarchical clustering method [35]. The advantages
of this method include: (1) There is no strong assumption on the distribution of the
clusters. As a bottom-up approach, the program constantly merges similar groups. The
local connectivity plays an essential role in the clustering step. Thus, the use of hierarchical
clustering makes it possible to tackle data groups with varying densities and affinities.
(2) It is easy to address categorical variables as well as continuous variables. Our program
employs Hamming distance to deal with categorical data. By contrast, continuous variables
are handled by the normalized Euclidean distance. (3) Rather than the number of groups,
the distance threshold becomes the user-defined parameter in the hierarchical clustering.
The program recursively performs the merging step until there is no group whose distances
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from others are shorter than the predefined tolerance. For a TI with diverse structures,
the hierarchical clustering method automatically adopts numerous groups to organize
pattern instances. In comparison, few clusters are produced when there are repetitive and
redundant structures in the TI.

Figure 4. An irregular template of adaptive size. (a) Training image. The first pattern captured by
a template of 3 × 3 is shown in red; (b) the correlation coefficient between the template center and
each neighboring point; (c) candidate templates of different sizes; (d) entropy curve of the pattern
histogram; (e) the optimal template size specified by the elbow-point detection.

Figure 5 provides a conceptual example to explain how to extract the morphological
characteristics from the TI. Prior to the clustering step, the computer extracts every pattern
with a template. Next, hierarchical clustering is performed to analyze the patterns. As
the initial condition, each instance is regarded as an individual group. Subsequently, the
computer combines the two groups with the shortest distances. It is worth noting that the
distance between two pattern groups is a key point in hierarchical clustering. To prevent
the influence of outliers, we select the average linkage. In other words, the mean distance
between all members in the two groups is the similarity metric. The program successively
performs the merging function until a stopping condition is met. In this simplified case,
we specify the distance threshold as 0.34. Namely, our program does not combine groups
whose distance is larger than 0.34. Thus, five pattern groups are detected in this case. Based
on the clustering results, the program records the number of members in each pattern
group. As displayed in Figure 5f, a pattern distribution is generated as an indicator of
the TI.
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Figure 5. The hierarchical clustering of training patterns. (a) Training image and the first spatial
pattern; (b) the irregular template designed by the correlation-driven method; (c) pattern dataset;
(d) patterns in MDS feature space; (e) hierarchical clustering result in MDS feature space; (f) pattern-
classification distribution of the TI; (g) decision-tree classifier trained by the clustering result.

After the clustering procedure, each pattern in the TI has a label. Next, our program
focuses on characterizing the geological model in accordance with the clustering results.
Similar to ANODI, a classification program is launched to create a pattern distribution from
the realizations. With the objective of improving the performance, there are two important
developments. First, the proposed method employs a decision tree [35] as the classifier.
Compared with the nearest-neighbor approach in ANODI, the benefit of the decision tree
lies in the efficiency to complete classification tasks. As an eager learning technique, the
decision tree attempts to extract valuable information from the training data. Based on a
flowchart-like structure, the prediction is achieved by continuously examining an attribute
of the query instance. The time complexity is heavily dependent on the number of features.
In comparison, the nearest-neighbor classifier is a lazy learner. The interpretation of the
training data is generally delayed until the computer inputs a query. Given the large
amount of patterns, the distance computation with every representative pattern leads to
considerable time consumption.

The second improvement in our classification method is that every pattern in the TI
is considered during the classifier training step. There is no pattern-selection step in the
proposed program. It is noticeable that the number of training examples does not have a
substantial influence on the speed of the decision tree classifier. In comparison, ANODI
identifies the pattern that is closest to the group centroid as a representative. To save
running time, the rest of the observations are removed by the classification program. The
geological model characterization program suffers from information loss.

A simplified example with which to discuss the geological model characterization
is shown in Figure 6. It can be seen that the first realization has a similar structure to the
TI in Figure 5a. Two channels flow from the left to the right side. In contrast, the RE2
exhibits different behavior. There are no connected components between the three blue
areas. Our program contains four procedures to distinguish two realizations. (1) The
computer extracts geological patterns with a template. As shown in Figure 6b, a dataset
is created to store all the patterns. (2) Each pattern is classified with the decision tree. In
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this case, we allocate the geological patterns into five groups. (3) The program records the
size of each pattern group. As shown in Figure 6c,f, a pattern classification distribution
is independently generated. (4) Based on Equation (1), Jensen–Shannon divergence is
applied to measure the similarity. A large value for distance indicates that there is a huge
difference between two geological models. In this case, the divergence between the TI
and the first realization is disJS(TI, RE1) = 0.11. By comparison, disJS(TI, RE2) = 0.24 is
yielded when the computer focuses on the TI and the second realization. These computation
results are consistent with the morphological characteristics of the three models.

 

Figure 6. Geological model characterization with the decision-tree classifier. (a) The first realization
RE1 with two channels; (b) dataset pattern constructed by RE1; (c) pattern classification distribution
of RE1; (d) the second realization RE2 with three isolated patches; (e) dataset pattern constructed by
RE2; (f) pattern classification distribution of RE2.

Based on the JS divergence, our PCD method is able to evaluate the geostatistical
variability and rank modeling methods. As with MPH and ANODI, the average distance
between the TI and the realizations becomes a descriptor of the pattern reproduction ability.
On the other hand, the spatial uncertainty is quantified by the average distance between
geological realizations. In addition, we insisted on applying the ratio to compare the
two simulation methods. According to Equations (4)–(6), three ratios were output as the
comparative results.

3.3. Automatic Resolution Importance Assignment with a Stacking Strategy

On the basis of the template design and model characterization procedures described
above, our program has the ability to measure geometrical similarity. One technical
limitation is that the template used above can only observe short-radius structures. As noted
in Section 2.2, ANODI applies a multi-resolution pyramid to analyze small-scale as well
as long-range structures. According to Equations (7) and (8), the morphological similarity
is combined across different resolutions. However, the geostatistical evaluation program
suffers from the fixed weights in the aggregation formula. The underlying assumption
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behind the current weight assignment is that the long-scale structure is less important
than the fine-grain pattern in the geostatistical modeling. However, this assumption is
not always true. For example, the long-range structure is a contributing factor in water
resource management. With the aim of creating high-quality realizations, MPS is dedicated
to reproducing the long-distance connectivity in flume systems and subsurface aquifer
systems [10,17]. In petroleum engineering, the permeability of reservoir rocks heavily
relies on the pore space [36]. Large-scale connected components play an important role in
geostatistical modeling.

With the objective of developing the multi-grid strategy and improving the evaluation
accuracy, a stacking framework was proposed to automatically assign the importance
of each grid. The motivation for this proposal was the ensemble-learning method in
the field of machine learning [35]. As a meta-learning framework, the stacking method
takes advantage of two or more base machine-learning programs. There are two basic
steps. First, a collection of base machine-learning programs are trained based on the same
dataset. In general, it is helpful to use a diverse range of learning techniques. Second, the
computer applies a meta-estimator to assess the effectiveness of each base program. The
meta-estimator focuses on exploring the relationship between the predictions made by the
base learner and the ground-truth labels.

Figure 7 provides an example to illustrate the stacking framework in our PCD. In this
case, we specify G = 2 due to the limited size of the TI. There are two kinds of classifier
in the proposed method. On one hand, the base classifier focuses on identifying the
relationship between the template center and neighboring points. Multiple-point statistics
information is effectively captured. For example, the short-range structure in the TI is
analyzed by the first base classifier. By comparison, base classifier 2 attempts to capture
long-range patterns with an extending template. On the other hand, the computer applies
a meta-classifier to evaluate the strength of each base classifier. For a TI with long-term
connectivity, there is a strong correlation between the center point and the conditioning
points gathered by a large template. Base classifier 2 plays an influential role in the point
prediction. A bigger contribution is assigned to the large-scale grid.

 

Figure 7. A stacking framework to compute the importance of each grid. (a) Training image;
(b) a compact template with four points; (c) a sparse template with an extending radius; (d) patterns
captured by the compact template; (e) patterns captured by the extending template; (f) the first base
classifier. The green lines represent the instances used to train the classifier. By comparison, the
patterns that are used to make point predictions are highlighted in blue; (g) the second base classifier;
(h) the meta-classifier, which outputs the importance of each grid.

Furthermore, our program applies two key modifications to the traditional stacking
framework. First, the base classifier is trained with different data. Based on the template
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with varying receptive fields, the computer captures spatial patterns across different reso-
lutions. The multi-grid features are individually input to each base classifier. Second, the
base classifiers share the same classification technique. In our program, the decision tree is
applied. By comparison, the stacking program previously used in the machine -learning
community encourages the utilization of heterogeneous classification techniques.

The detailed steps in the proposed method are as follows. (1) Viewing the irregular
template as the prototype, our program creates a set of expanding templates to extract
patterns from different grids. (2) A dataset is generated to collect training patterns. A
noticeable phenomenon is that our program individually stores the center point and the
template points. The conditioning points gathered by the template are the input fea-
tures in the classification task. By comparison, the center point is viewed as the target
variable. (3) The computer divides each pattern dataset into two subsets. Our program
randomly assigns 70% instances into the first set. Accordingly, 11 patterns are selected in
this case. The five remaining patterns comprise the second subset. (4) Two base classifiers
are trained by the first pattern subset. The proposed method applies the decision tree to
build the bridge between the template center and the neighboring points. After the training
step, the patterns in the second subset are fed into these two base classifiers. Thus, five
predictions are separately produced. (5) Our program trains the meta-classifier. In this
framework, random forest is employed as the meta-classifier. The meta-classifier focuses
on determining the relationship between the base-classifier outputs and the center points.
(6) The meta-classifier outputs the feature importance as the contribution of each base
classifier. In this case, the importance values of the two resolutions are 0.51 and 0.49, re-
spectively. These computational results imply that the role of long-range structures is close
to that of the small-range patterns. In other words, reproducing large-scale connectivity is
an important aspect in this modeling scenario. However, the current MPH and ANODI
cannot automatically control the weight assignment according to the simulation scenario.
The significance of long-range structures is underestimated in this conceptual case.

4. Applications

4.1. A 2D Benchmark Channel Model with Anisotropic Structures

As the first application, the benchmark channel model was employed to examine the
proposed PCD. Based on the TI shown in Figure 8a, we independently launched a group
of MPS programs to generate 200 realizations. At first, single normal equation simulation
(SNESIM) [18] and filter-based simulation (FILTERSIM) [15] were individually performed
by Stanford Geostatistics Modeling Software (SGeMS) [37]. We applied a template with
a size of 9 × 9 and a multigrid strategy of G = 3 in SNESIM. By comparison, the default
setting was utilized by FILTERSIM. The sizes of the searching template and the pasting
template were specified as 11 × 11 and 7 × 7, respectively. Next, we implemented three
database-based MPS programs. Improved parallelization (IMPALA) [38], column-oriented
simulation (CSSIM) [39], and nearest-neighbor simulation (NNSIM) [10] were performed to
create the channel models. The parameters in IMPALA and CSSIM were the same as those
in SNESIM. In NNSIM, our program specifies the cosine distance threshold and the number
of teachers as 0.1 and 5, respectively. Finally, direct sampling (DS) [40] and tree-based direct
sampling (TDS) [17] were carried out in this stochastic simulation scenario. According to
the experiments conducted by Meerschman et al. [41], three predefined parameters of DS
are NDS = 30, tDS = 0.05 and f DS = 0.5. In addition, TDS is activated by a clustering tree
with a height of 9. The first realization created by these methods is shown in Figure 8.

Based on the geological models discussed above, our PCD was performed to quan-
titatively assess the MPS simulation quality. As the first step, our program generated a
template according to the intrinsic characteristics of TI. The computation results are shown
in Figure 9. It is clear that there was strong anisotropy in the channel image. The spatial
correlation and connectivity in the horizontal direction were more intensive than in the
vertical direction. In order to conserve the channel structures, the proposed template design
method sequentially collects points with strong correlations. The pattern entropy function
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and the elbow point detection technique were employed to determine the template size. As
displayed in Figure 9d, 26 points were involved in our irregular template.

Figure 8. Channel realizations created by MPS programs. (a) Training image; (b) SNESIM model;
(c) FILTERSIM model; (d) IMPALA model; (e) CSSIM model; (f) NNSIM model; (g) DS model; and
(h) TDS model.

Figure 9. The correlation-driven template design in the channel simulation. (a) The correlation
coefficient of each template point; (b) entropy curve of the pattern histogram; (c) template size
selection by the elbow point detection. (d) the optimal template with 26 points.

Next, the stacking framework was launched to assign the resolution importance. In
this case, we specified the number of G = 4. As the base classifiers, four decision trees
focused on predicting the state of the template center according to the neighboring points
across different resolutions. Moreover, the random forest technique was used as the meta-
classifier to validate each base classifier. Consequently, the resulting weight vector was
[0.56, 0.24, 0.17, 0.03].

Next, the hierarchical clustering method was used to organize the training patterns.
For instance, our program extracted 9207 patterns from the finest grid g = 1. Based on
the hierarchical clustering program associated with a distance threshold of 0.1, 339 pattern
groups were found. Subsequently, our program performed a decision tree to characterize
the MPS realizations. The frequency of each category became a descriptor of the morpho-
logical characteristics. Finally, the JS divergence and the weighted aggregation technique
were carried out to distinguish the two geological models. Based on Equations (7) and (8),
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we quantified the pattern reproduction and spatial uncertainty by the average distance.
The relative behavior of each MPS program was compared by Equations (4)–(6). In this
case, we applied the SNESIM realizations as the method B. The computation results are
highlighted in Figure 10a. Furthermore, we activated multi-dimensional scaling (MDS) to
visualize the calculation results. In the feature space, each node represents a geological
model. The two close points imply that there was intensive compatibility between two MPS
realizations. Figure 11a displays the MDS visualization results. In order to avoid visual
confusion, we partitioned the point cloud into three parts. First, the SNESIM, IMPALA,
and CSSIM realizations are emphasized. Second, the blue points display the dispersals of
NNSIM, DS, and TDS models. Third, the FILTERSIM realizations are presented in yellow.

 

Figure 10. Geostatistical-quality-evaluation results from (a) PCD; (b) MPH; and (c) ANODI.

With the aim of performing an extensive comparison, we implemented MPH and
ANODI in this case. In MPH, a template of size 3 × 3 was applied to extract the patterns.
Therefore, there were 512 possible values in the multiple-point histogram. Furthermore,
we employed a template of size 7 × 7 and a multi-grid strategy with G = 4 in ANODI.
The number of pattern clusters was specified as 40. The computation results of MPH and
ANODI are shown in Figures 10 and 11.

Two key observations were made based on the PCD results. (1) According to the com-
parative ratios, SNESIM exhibited a competitive performance. In Figure 10a, all the overall
ratios are lower than 1.0. The main reason is that the postprocessing step in SNESIM plays a
positive role in improving simulation quality. Mismatching structures are upgraded by the
re-simulation step. (2) Based on Figure 11a, the preceding MPS programs can be partitioned
into three groups. First, there was a strong similarity between the SNESIM, IMPALA, and
CSSIM realizations. The orange, green, and turquoise points are located at the top. Next,
the NNSIM, DS, and TDS models had relatively small distances. It is clear that the blue
points constitute a group in the bottom-left. Finally, the FILTERSIM realizations in yellow
were in disagreement with the other methods. A similar phenomenon can be observed in
Figure 11b. However, ANODI did not highlight a significant difference between the MPS
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realizations. The main reason for this finding lies in the pattern-matching mechanism in
the MPS framework. SNESIM, IMPALA, and CSSIM employ the pruning strategy to find
a compatible instance. When a completely matching pattern does not exist, the program
discards the conditioning point with the maximum distance. By comparison, distance
computation is an essential component in NNSIM, DS, and TDS. These three programs
apply Hamming distance to distinguish between patterns. Furthermore, the core idea in
FILTERSIM is to utilize a set of filters to organize training patterns. The program classifies
2D patterns based on the convolution scores with six predefined kernels.

Figure 11. Uncertainty-quantification results based on (a) PCD; (b) MPH; and (c) ANODI.

With the purpose of improving practicability, we investigated the parameter sensitivity
of PCD, MPH, and ANODI. SNESIM and DS models were adopted as method A and
method B, respectively. On one hand, we studied the influence of the distance threshold
in the PCD. The comparison results are shown in Figure 12a. As the only user-defined
parameter, the distance threshold in the hierarchical clustering had a small effect on the
evaluation result. Three ratios did not demonstrate intensive variation. On the other
hand, parameter setting is a key module within MPH and ANODI. There were strong
fluctuations in the comparative ratio curves. The changing behavior creates difficulties in
the quantitative evaluation of the MPS modeling quality.

4.2. A 2D Non-Stationary Flume System with Morphologically Complex Structures

Autogenic variability is a fundamental aspect of numerous Earth surface systems.
Schedit et al. [1] and Hoffimann et al. [3] simulated a delta evolution in laboratory exper-
iments. Based on the overhead snapshots, a group of flume realizations were created to
express spatiotemporal uncertainty in a channelized transport system. In this section, we
focus on examining the performance of PCD in the context of multiple geological categories.
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Figure 12. Parameter sensitivity of three evaluation methods. (a) The influence of distance threshold
within PCD; (b) the influence of template within MPH; (c) the influence of the grid number within
MPH; (d) the influence of the cluster number within ANODI; (e) the influence of the grid number
within ANODI.

Figure 13a exhibits three TIs. The sediment is expressed by the blue area, while the
intensity of flow is reflected by other colors. In the first TI, there are only two geological
categories. By contrast, three and four states are presented in the second and third TIs, re-
spectively. We independently implemented NNSIM and TDS to generate the non-stationary
flume model. 10 flume realizations were individually created by two programs. With the
aim of addressing non-stationarity, the computer introduces the auxiliary variable into
the MPS framework. Based on the proximity to the original point, the simulation grid is
split into four subareas. Therefore, NNSIM and TDS create an independent pattern dataset
for each area. With the purpose of improving the simulation quality, NNSIM applies a
template of size 9 × 9 and a multi-grid strategy of grid 4. We specified the parameters in
TDS as NDS = 30, tDS = 0.05 and f DS = 0.5. Moreover, the height of the clustering tree
was configured as 9. Figure 13c,d provide the first realization of the methods described
above. Detailed explanations of the TI and MPS simulation are provided in [1,10].

The proposed PCD was applied to rank the MPS programs. TDS and NNSIM were
specified as methods A and B, respectively. In order to address geometrically complex
structures, we specified the distance threshold in the hierarchical clustering as 0.15. Within
the multi-grid framework, the number of grids was set as 4. The comparative ratios and
MDS visualization are shown in Figure 14. The overall ratios in the three scenarios were
close to 1.00. In addition, the point clouds had comparable dispersal. These findings
suggest that NNSIM and TDS had similar accuracy in this simulation task.

We carefully investigated the parameter setting issue. One key advantage of the
proposed method is that PCD applies the correlation-driven template, a combination of
hierarchical clustering and decision tree, and a stacking framework. A set of parameters
are automatically computed according to the morphological characteristics of the TI. As
shown in Figure 15, the distance threshold did not play an influential role in the evaluation
results. The adaptive parameter configuration within PCD is beneficial to quantitatively
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assess the progress of each MPS program. By contrast, ANODI is heavily dependent on the
parameter specification. In order to extract complex patterns, ANODI applies a template
with a size of 7 × 7. The effects of the number of clusters and the number of grids were
checked. As displayed in Figure 16, there were remarkable differences between the ANODI
outputs. It is challenging to objectively compare the strengths of NNSIM and TDS.

 

Figure 13. MPS realizations in the flume modeling. (a) Three training images with multiple geological
categories; (b) auxiliary variable in MPS simulation. The numbers indicate the indices of four subareas;
(c) NNSIM realizations in three modeling scenarios; (d) TDS realizations in three modeling scenarios.

Moreover, we investigated the sensitivity of the control parameters in relation to
the NNSIM simulation quality. On one hand, the template is an essential component
in the collection of conditioning points. An expanding template has a positive effect
on the reproduction of complicated structures. NNSIM applies templates with sizes of
3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, and 13 × 13. Furthermore, G = 3 is utilized to extract
patterns across different scales. On the other hand, the multi-grid strategy provides a
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valuable tool to simulate patterns across different resolutions. The numbers of grids were
configurated as 1, 2, 3, and 4, respectively. A template with a size of 9 × 9 was employed. For
each parameter specification, 20 flume models were independently generated by NNSIM.

Figure 14. PCD calculation results. (a) Comparative ratios between NNSIM and TDS; (b) uncertainty
quantification in the two-facies flume simulation; (c) uncertainty quantification in the three-facies
flume simulation; (d) uncertainty quantification in the four-facies flume simulation.

Figure 15. Parameter sensitivity of PCD in (a) two-facies flume simulation; (b) three-facies flume
simulation; (c) four-facies flume simulation.

We applied PCD to find reliable realizations and quantify the uncertainty. The model
set produced by the first parameter setting was defined as method B. The evaluation results
are shown in Figure 17. The findings were as follows. (1) MPS simulation benefits from an
extending template. In Figure 17a–c, the purple columns have decreased with the develop-
ment of the template size. This reveals that MPS methods are able to effectively reproduce
patterns in the simulation domain. Furthermore, the expanding template contributed to
the increase in the overall ratios, which are expressed in orange. (2) The multi-grid strategy
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is a key module to improve MPS quality. According to Figure 17d–f, a high grid value not
only enriches the spatial uncertainty but also reduces the differences between the TI and
the realizations.

 

Figure 16. Parameter sensitivity of ANODI in the three modeling scenarios. (a) The influence
of cluster number on two-facies simulation; (b) the influence of cluster number on three-facies
simulation; (c) the influence of cluster number on four-facies simulation; (d) the influence of grid
number on two-facies simulation; (e) the influence of grid number on three-facies simulation; (f) the
influence of grid number on four-facies simulation.

In order to complete an extensive comparison, we inspected more parameter com-
binations within NNSIM. The influences of the template size and the multi-grids were
simultaneously investigated. In this case, our PCD selected the realizations created by
a template 9 × 9 and two grids as method B. The computational results are shown in
Figure 18. First, the red color in the spatial uncertainty map indicates that the model sets
demonstrated a high level of diversity. Second, the close proximity to the TI is emphasized
by the white and blue at the second column of Figure 18. Third, the competitive programs
are highlighted by the red in the overall ratio matrix. Apparently, the use of a large template
and a multi-grid approach are helpful to create realistic realizations. The program provides
its best performance when a template of size 9 × 9 and three grids are employed. In
addition, it should be noted that there are blue squares in the bottom-right area at the last
column in Figure 18. This implies that NNSIM does not provide reliable models when a
template of size 13 × 13 and G = 4 is utilized. The main reason for this is that the large
template and grids contain numerous conditioning points in MPS simulations. The uncorre-
lated points not only provide redundant information but also create computational burden.
Therefore, the parameter selection is a key component within the MPS framework. An
unsuitable extension in template size and grids prevents the MPS program from outputting
favorable models.

4.3. A 2D Subglacial-Bedrock-Elevation Model with Continuous Variable

Knowledge of the topography beneath Antarctica and Greenland ice sheets is essential
for a wide range of glaciological investigations. With the aim of better predicting subglacial

193



Remote Sens. 2023, 15, 2708

flow behavior, it is necessary to create a collection of high-resolution topographic models
and express spatial uncertainty. In particular, the characteristics of the subglacial topogra-
phy of the Thwaites Glacier in the Amundsen Sea Embayment have received considerable
attention [42]. The accelerating ice loss in Thwaites Glacier has a substantial influence on
the stability of the West Antarctic Ice Sheet [43]. Based on the non-stationary multiple-point
geostatistics method, Yin et al. generated a set of realistic topographic models [7]. On
one hand, the stochastic modeling method is guided by 166 high-quality topographic
training images, which are extensively sampled from the deglaciated regions in Arctic and
Antarctica. On the other hand, ice penetrating radar data become the hard data in this
simulation task.

 

Figure 17. PCD evaluation to check the parameter sensitivity within NNSIM. (a) PCD comparison be-
tween different templates in two-facies simulation; (b) PCD comparison between different templates
in three-facies simulation; (c) PCD comparison between different templates in four-facies simula-
tion; (d) PCD comparison between different grids in two-facies simulation; (e) PCD comparison
between different grids in three-facies simulation; (f) PCD comparison between different grids in
four-facies simulation.

Aiming at generating diverse models, three geostatistical simulation methods were
applied in this case. (1) We used the Kriging method to generate a subglacial topographic
model according to the radar data. As a deterministic method, Kriging produces only
one realization. (2) Sequential Gaussian Simulation (SGSIM) was carried out to create
10 stochastic realizations. The program estimates the variogram on the basis of radar lines.
(3) We implemented non-stationary multiple-point geostatistics to create digital elevation
models. There were two major steps in this process. First, a training-image-transition
method was used to find the optimal prior model for each local subarea. Second, the
computer activated direct sampling (DS) to complete the gap-filling task. In this case, MPS
generated 10 subglacial topographic models. The first realization of three geostatistical
modeling programs is shown in Figure 19. The authors of [7] discuss the technical details
of previous methods.
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Figure 18. PCD evaluation of various NNSIM parameter combinations. (a) Two-facies simulation;
(b) three-facies simulation; (c) four-facies simulation.

In this section, the proposed PCD is examined by a large-scale stochastic simulation
with continuous variable. A noticeable phenomenon is that there was no training image in
this evaluation task. Kriging and SGSIM were used to explore the spatial dependency in
accordance with the radar lines. In contrast, the non-stationary MPS featured a min–max
normalization on 166 TIs. The standardization of the bedrock elevation helped MPS con-
centrate on reproducing the morphological structures. Accordingly, it was not reasonable
to directly compare the 166 TIs and geostatistical realizations in this case.

With the aim of mitigating the absence of TI, our PCD was used to analyze the spatial
patterns in the first MPS realization. As the first step, the correlation-driven template design
method was launched. To calculate the entropy curve, we applied the multi-level thresh-
olding program to tackle the continuous variable. The bedrock elevation was uniformly
partitioned into several bins. Therefore, the number of geological categories was an im-
portant parameter. Figure 20b provides the segmentation results. As shown in Figure 20c,
our program computed the template size according to the intrinsic characteristics of the
categorical models. There were two findings. (1) The template size ranged from 18 to 22
when the number of facies was lower than 6. (2) With the development of the geological
categories, the template size progressively decreased. The main reason is that there was
an exponential relationship between the number of geological states and the amount of
possible pattern configurations. A high value of geological categories leads to a sparse
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pattern histogram and a slow increase in the entropy function. Therefore, we selected the
template that was determined by the MPS realization with three categories. A template with
18 conditioning points was applied to extract the spatial patterns in the downstream steps.

Figure 19. Antarctica topographic models created by the geostatistical methods. (a) Radar lines are
the hard data in the modeling task; (b) Kriging realization; (c) the first SGSIM realization; (d) the
first MPS realization.

Next, the stacking strategy was activated to quantify the importance of long-range
and small-scale structures. With the template mentioned above, our program conducted
a multi-grid analysis based on the first realization of the three geostatistical modeling
methods. The grid importance is shown in Figure 21. To emphasize the key findings, we
do not depict the contribution of the finest grid. It is apparent that there is a significant
difference between the three realizations. On one hand, long-distance structures are not
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well conserved by Kriging and SGSIM. The conditioning points collected by the large
templates had a weak correlation with the template center. On the other hand, there was
a strong relationship between the template center and the surrounding points in MPS
realization. Compared with two-point statistics, MPS exhibits better performance in terms
of long-range pattern reproduction.

 

Figure 20. Correlation-driven template design method in the subglacial modeling case. (a) MPS
realization; (b) categorical models with different numbers of geological states; (c) the template sizes
computed by multiple categorical models.

In accordance with the adaptive template and grid importance, we performed hierar-
chical clustering and the decision tree classifier to characterize the subglacial models. The
JS divergence and multi-dimensional scaling was carried out to quantify the morphological
similarity. Figure 22a provides the evaluation results. The topographic realizations gen-
erated by MPS are highlighted in red. By contrast, blue and green are used to represent
the Kriging and SGSIM models, respectively. In the feature space, two distant points
indicate that there was a large mismatch between the two topographic models. Therefore,
the three geostatistical methods have different behaviors in terms of their morphologi-
cal characteristics. On one hand, Kriging and SGSIM are two-point-statistics modeling
methods. The linear assumption is an important concept in Kriging. SGSIM applies a
multi-Gaussian random function to describe spatial structures. Unknown points in SG
are estimated according to a weighted combination of the surrounding points. In order to
mimic the prior material, both Kriging and SGSIM utilize a variogram to allocate the weight
of each conditioning point. It is challenging to reproduce geometrically complex structures
in this way. On the other hand, MPS applies a template to extract spatial patterns. The
relationship between the template center and the neighboring points is a core component
in the simulation of geological models. Therefore, one key advantage of MPS is its ability
to generate realistic realizations.

Furthermore, our PCD was used to examine the effectiveness of the DS parameter.
According to the experiment conducted by Meerschman et al. [41], the DS performance
largely relies on the neighboring points as well as distance tolerance. Increases in the
number of neighbors have positive effects on the simulation of complicated patterns.
In comparison, pattern reproduction quality can be improved by reducing the distance
tolerance. Thus, we created two realization sets. First, the influence of the distance
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toleration was investigated. The program fixed the neighbors NDS = 30 and f DS = 0.1.
The tolerance tDS was configurated as 0.025, 0.050, 0.075, and 0.100, respectively. Second,
the program concentrated on the function of the neighboring points. The neighbor NDS

varied from 10 to 40, while the tDS and f DS were specified as 0.05 and 0.1, respectively.
Figure 23 displays the first realization produced by these parameter combinations.

Figure 21. The grid importance computed by three geostatistical models.

Figure 22. Uncertainty quantification based on 2D topographic realizations. (a) Model comparison
between Kriging, SGSIM, and MPS; (b) model comparison between MPS simulations performed
with different distance tolerances; (c) model comparison between MPS simulations performed with
different neighbors.
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Figure 23. DS realizations with various parameter combinations. (a) Subglacial topographic models
generated with different distance tolerances; (b) subglacial topographic models generated with
different neighbors.

The proposed PCD was applied to measure the similarities between the DS models.
The patterns in the first realization created by NDS = 30, tDS = 0.05, and f DS = 0.1
were applied to train the decision-tree classifier. PCD calculation results are shown in
Figure 22b,c. Two notable phenomena were observed. (1) The distance tolerance has a
substantial effect on the modeling quality. According to Figure 22b, the red and yellow
clouds had a large mismatch with other realizations. By comparison, the two blue groups
were relatively close. This indicates that the topographic realizations created by tDS = 0.050
had similar morphological characteristics to the models produced by tDS = 0.025. However,
a low value of the distance tolerance creates computational burden. Given that tDS = 0.025,
4.07 h is necessary to create one realization. In contrast, the computer requires 0.86 h to
generate a model when tDS is set as 0.050. Considering the time performance, 0.050 is an
appropriate choice in this simulation scenario. (2) the neighboring point is a contributing
factor to the simulation quality. In Figure 22c, the deep cloud is distant from the others. A
small number of neighboring points in DS is not sufficient to reproduce morphologically
complex structures.

4.4. A 3D Sandstone Model from a 2D Slice

In petroleum engineering, three-dimensional sandstone models are important ma-
terials with which to study the geometrical and physical properties of rocks [44,45]. In
this section, we evaluate the PCD performance in a high-dimension sandstone system. As
shown in Figure 24a, a 2D sandstone slice of 128 × 128 was the TI motivating a geostatistical
simulation. This image was generated by computed tomography (CT) with a resolution
of 10 μm. There were two geological categories. The pore and grain are expressed by the
white and black areas, respectively.
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Figure 24. The 2D sandstone slice and 3D models. (a) Training image; (b) IMPALA realization; (c) NNSIM
realization; (d) DS realization; (e) CDS realization; (f) PDFSIM realization; (g) SGSIM realization.

Aiming at outputting realistic models, we implemented a series of modeling programs
to create 3D models on the basis of the 2D slice. First, IMPALA [38] and NNSIM [10] were
activated. Because of the absence of 3D TI, these two programs were straightforwardly
introduced into the probability aggregation framework. Instead of 3D patterns, the prob-
ability aggregation focuses on calculating a conditional probability based on several 2D
patterns. The detailed workflow is described in [46]. We specified a template with a size
of 5 × 5 and a multi-grid strategy with G = 3. Second, we implemented direct sampling
(DS) [40,47] and correlation-driven direct sampling (CDS) [14]. With the intention of re-
producing complex structures, CDS employed the weighted Hamming distance to define
the compatible patterns. The other parameters were specified as NDS = 30, tDS = 0.0,
and f DS = 1.0. Third, a pattern-density-function simulation (PDFSIM) [48,49] was carried
out. The core idea was to adopt the pattern density function to characterize the geological
models and guide the modeling procedure. Moreover, the program designed a cascaded
polymorphic method, which directly pasted a matching patch between cascaded grids
within the multi-grid framework. Fourth, we performed a sequential Gaussian simulation
(SGSIM) with SGeMS [37]. As a two-point statistics method, the variogram was a key
tool in the description of the microstructure in the TI. Based on the parameters stated
above, 10 sandstone realizations were individually created by the previous methods. The
first realization is shown in Figure 24. The pore space is highlighted in blue while the grain
is represented by the gray area.

The proposed PCD was launched to validate the simulation quality. To organize the
spatial patterns, we specified the distance threshold as 0.1 in the hierarchical clustering.
Moreover, a multi-grid strategy with G = 4 was adopted to capture the patterns across
different scales. PCD focused on comparing IMPALA with the other modeling programs.
The calculation results are shown in Figure 25.

There were three phenomena in the PCD results. (1) The CDS and PDFSIM realizations
had small distances to the TI. In order to better reproduce the pore space, CDS assigned
the weights of the conditioning points according to the visual features of the TI. The high
correlation points had a strong influence on the MPS simulation. By comparison, PDFSIM
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is an iterative program. The sandstone model is continuously upgraded until the difference
from the TI is lower than the predefined threshold. (2) The high-dimension modeling strat-
egy played an important role in the pattern reproduction as well as the spatial uncertainty.
On one hand, the NNSIM and IMPALA exhibited comparable simulation qualities, as
shown in Figure 25b. Although different datasets were employed, both two programs were
incorporated into the probability aggregation framework. The computer employed Bordely
formula to calculate the global probability according to three 2D conditional probabilities.
By contrast, DS and CDS applied the majority vote to predict an unknown point in the
3D domain. There were no conditional probability computations within the DS and CDS
frameworks. (3) There was a noticeable mismatch between the TI and SGSIM models.
Compared with the MPS framework, the SGSIM suffers from the limited ability of the
variogram. In this sandstone application, it was difficult for the two-point statistics to
express the pore microstructure.

 

Figure 25. PCD evaluation of the sandstone models. (a) Three comparative ratios between IMPALA
and other programs. (b) Uncertainty quantification based on sandstone models.

5. Discussion

As mentioned in the Introduction, pattern reproduction and spatial uncertainty are
two important variabilities within geostatistical modeling. MPH focuses on recording the
frequency of each pattern configuration. Pattern distributions are descriptors of geological
models. By contrast, ANODI activates a clustering step to control the dimension of the
pattern distribution. A multi-grid strategy is carried out to analyze spatial patterns across
different scales. In this paper, we proposed a PCD method to evaluate the modeling
quality and perform the uncertainty quantification. As reported in Section 4, four practical
applications were conducted to examine the previous three methods. A key finding was
that the performances of MPH and ANODI were heavily dependent on the parameter
configuration. On one hand, the accuracy of MPH relies on the template setting and the
number of grids. As shown in Figure 12b, the comparative ratio between SNESIM and DS
drastically changed with the variations in the templates. With the development of the grids,
the three ratios between the two realization sets approached 1.00. On the other hand, the
numbers of clusters and grids were contributing factors in ANODI. According to Figures 12
and 16, the program could not output coherent results in the channel and flume simulation.
The fluctuation in the comparative ratios created difficulties in the quantitative analysis of
the modeling accuracy.

One key advantage of the proposed PCD is the adaptive parameter specification. In
accordance with the morphological characteristics of the TI, our method automatically
specifies the template configuration, the number of pattern clusters, and the importance
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of each resolution. The distance threshold in the hierarchical clustering step is the only
user-defined parameter. As displayed in Figure 12a, the comparison between SNESIM
and DS was not significantly influenced by the value of the distance threshold. A similar
phenomenon is presented in Figure 15. The comparative ratios indicated that NNSIM and
TDS had comparable accuracies.

In addition, the strengths of two-point statistics and multiple-point statistics were
discussed. One core concept in Kriging and SGSIM is the utilization of the variogram to
explain the expected difference between two points. The simulation procedure estimates an
unknown point through a weighted sum of the surrounding pixels. In contrast, MPS takes
advantage of a template to explore the relationship between the template center and the
neighboring points. Therefore, MPS provides a powerful way to reproduce geometrically
complicated structures. As shown in Figures 19 and 21, the long-range structures were
well-conserved in MPS realizations. This finding supports the investigations conducted by
Yin et al. [7] and Zuo et al. [17]. According to their research, MPS has the ability to produce
a group of realistic topographic models with suitable diversity. The benefits of multiple-
point information are further examined in Sections 4.2 and 4.3. An extending template
has a positive effect on improving the consistency between the TI and the simulated
realizations. As reported in Section 4.4, we performed a 3D sandstone reconstruction. The
pore microstructure was properly recreated in the MPS models. By contrast, the deep
blue points corresponding to the SGSIM realizations were at large distances from the TI in
Figure 25.

Next, we focused on the sensitive factors within the MPS simulation. An important
finding was that the pattern similarity metric had a substantial influence on the modeling
quality. In Figure 11a, the MPS programs can be divided into three groups. First, SNESIM,
IMPALA, and CSSIM shared similar dispersals. The main reason is that they employ the
pruning strategy to find desired pattern instances. The program removes the farthest points
in the conditioning pattern if the matching pattern is not presented in the TI. Therefore, the
points that are close to the template center play an important role in the pattern-searching
step. Second, the Hamming distance is used by NNSIM, DS, and TDS to distinguish
patterns. The template points have the same importance. The similarity between NNSIM
and TDS was further validated by the flume models. Third, FILTERSIM applies six convo-
lutional kernels to characterize 2D patterns. A compatible image patch is pasted into the
simulation domain. However, one key drawback of these MPS programs is that the intrinsic
characteristics of the TI are not considered in the pattern similarity metric. The contribution
of each template point is fixed and constant. Accordingly, it would be interesting to assess
the effect of each conditioning point during MPS simulations. Adaptive weight assignment
is a promising way to further improve geostatistical modeling programs.

6. Conclusions

In this work, a pattern classification distribution method was proposed to assess
geostatistical modeling and quantify spatial uncertainty. With the objective of improving
the evaluation accuracy, a set of machine-learning techniques were employed to overcome
the technical limitations in the previous multiple-point histogram and the analysis of
distance methods. First, a correlation-driven template design approach was suggested
to extract spatial patterns. With a region-growing program, the computer sequentially
collects conditioning points according to their correlations with the template center. The
number of template points is automatically determined by the elbow point of the entropy
function. An irregular template of adaptive size has a positive effect on preserving the
structure in the TI. Second, the proposed PCD utilizes the clustering and classification
programs to characterize the geological realizations. In order to simplify the parameter
setting, hierarchical clustering is launched to organize patterns in the TI. On the basis of
the clustering results, a decision tree is trained to classify each pattern in geostatistical
models. The program outputs a pattern distribution according to the number of member
instances in each pattern category. The Jensen–Shannon divergence within the pattern
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distribution becomes a measure of the similarity between two realizations. Third, a stacking
framework was applied to develop the multi-grid analysis. The base classifier focuses
on exploring the relationship between the template center and the neighboring points
in different resolutions. By comparison, a meta-classifier was employed to evaluate the
effectiveness of each base-classifier. The importance of each resolution was adaptively
assigned according to the morphological characteristics of the TI.

We examined the proposed PCD by using benchmark channel models, non-stationary
flume models, subglacial topographic realizations in Antarctica, and three-dimensional
sandstone models. With the intention of facilitating an extensive comparison, various
multiple-point statistics methods were implemented to generate geological models. The
computational results indicated that our method is capable of addressing multiple geo-
logical categories, continuous variables, and high-dimensional structure. Compared with
MPH and ANODI methods, the proposed PCD benefits from the automatic parameter-
specification step. The underlying relationship between geostatistical realizations is effi-
ciently recognized by our method. As the only predefined parameter, the distance threshold
in the hierarchical clustering does not have a significant effect on the computational results.
The findings indicate that our PCD provides a feasible way to find reliable geostatistical
models and quantify spatial uncertainty.
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Abstract: Hyperspectral image classification (HSI) has rich applications in several fields. In the past
few years, convolutional neural network (CNN)-based models have demonstrated great performance
in HSI classification. However, CNNs are inadequate in capturing long-range dependencies, while it
is possible to think of the spectral dimension of HSI as long sequence information. More and more
researchers are focusing their attention on transformer which is good at processing sequential data.
In this paper, a spectral shifted window self-attention based transformer (SSWT) backbone network
is proposed. It is able to improve the extraction of local features compared to the classical transformer.
In addition, spatial feature extraction module (SFE) and spatial position encoding (SPE) are designed
to enhance the spatial feature extraction of the transformer. The spatial feature extraction module
is proposed to address the deficiency of transformer in the capture of spatial features. The loss of
spatial structure of HSI data after inputting transformer is supplemented by proposed spatial position
encoding. On three public datasets, we ran extensive experiments and contrasted the proposed model
with a number of powerful deep learning models. The outcomes demonstrate that our suggested
approach is efficient and that the proposed model performs better than other advanced models.

Keywords: transformer; shifted window; spatial feature extraction (SFE); spatial position encoding
(SPE); hyperspectral image (HSI) classification

1. Introduction

Because of the rapid advancement of hyperspectral sensors, the resolution and accu-
racy of hyperspectral images (HSI) have also increased greatly. HSI contains a wealth of
spectral information, collecting hundreds of bands of electron spectrum at each pixel. Its
rich information allows for excellent performance in classifying HSI, and thus its application
has great potential in several fields such as precision agriculture [1] and Jabir et al. [2] used
machine learning algorithm for weed detection, medical imaging [3], object detection [4],
urban planning [5], environment monitoring [6], mineral exploration [7], dimensionality
reduction [8] and military detection [9].

Numerous conventional machine learning methods have been used to the classifi-
cation of HSI in the past decade or so, such as K-nearest neighbors (KNN) [10], support
vector machines (SVM) [11–14], random forests [15,16]. Navarro et al. [17] used neural
network for hyperspectral image segmentation. However, as the size and complexity of the
training set increases, the fitting ability of traditional methods can show weakness for the
task, and the performance often encounters bottlenecks. Song et al. [18] proposed a HSI
classification method based on the sparse representation of KNN, but it cannot effectively
apply the spatial information in HSI. Guo et al. [19] used a fused SVM of spectral and
spatial features for HSI classification, but it is still difficult to extract important features
from high-dimensional HSI data. Deep learning have developed rapidly in recent years,
and their powerful fitting ability can extract features from multivariate data. Inspired by
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this, the designed deep learning models have proposed in HSI classification tasks, such
as recurrent neural network (RNN) [20–22], convolutional neural network (CNN) [23–28],
graph convolutional network (GCN) [29,30], capsule network (CapsNet) [31,32], long short
term memory (LSTM) networks [33–35]. Although these deep learning models show
good performance in several different domains, they have certain shortcomings in HSI
classification tasks.

For CNNs, which are good at natural image tasks, Its benefit is that the image’s
spatial information can be extracted during the convolution operation. HSI-CNN [36]
stacks multi-dimensional data from HSI into two-dimensional data and then extracts
features efficiently. 2D-CNN [37] can capture spatial features in HSI data to improve
classification accuracy. However, HSI has rich information in the spectral dimension, and if
it is not exploited, the performance of the model is bound to be difficult to break through.
Although the advent of 3D-CNN [38–41] enables the extraction of both spatial and spectral
features, the convolution operation is localized, so the extracted features lack the mining
and representation of the global Information.

Recently, transformer has evolved rapidly and shown good performance when per-
forming tasks like natural language processing. Based on its self-attention mechanism, it is
very good at processing long sequential information and extracting global relations. Vision
transformer (ViT) [42] makes it perform well in several vision domains by dividing images
into patches and then inputting them into the model. Swin-transformer [43] enhances the
capability of local feature extraction by dividing the image into windows and performing
multi-head self-attention (MSA) separately within the windows, and then enabling the
exchange of information between the windows by shifting the windows. It improves the
accuracy in natural image processing tasks and effectively reduces the computational effort
in the processing of high-resolution images. Due to transformer’s outstanding capabilities
for natural image processing, more and more studies are applying it to the classification of
HSI [44–50]. However, if ViT is applied directly to the HSI classification, there will be some
problems that will limit the performance improvement, specifically as follows.

(1) The transformer performs well at handling sequence data( spectral dimension infor-
mation), but lacks the use of spatial dimension information.

(2) The multi-head self-attention (MSA) of transformer is adept at resolving the global
dependencies of spectral information, but it is usually difficult to capture the relation-
ships for local information.

(3) Existing transformer models usually map the image to linear data to be able to input into
the transformer model. Such an operation would destroy the spatial structure of HSI.

HSI can be regarded as a sequence in the spectral dimension, and the transform
is effective at handling sequence information, so the transformer model is suitable for
HSI classification. The research in this paper is based on tranformer and considers the
above mentioned shortcomings to design a new model, called spectral-swin transformer
(SSWT) with spatial feature extraction enhancement, and apply it in HSI classification.
Inspired by swin-transformer and the characteristics of HSI data which contain a great
deal of information in the spectral dimension, we design a method of dividing and shifting
windows in the spectral dimension. MSA is performed within each window separately,
aiming to improve the disadvantage of transformer to extract local features. We also design
two modules to enhance model’s spatial feature extraction. In summary, the following are
the contributions of this paper.

(1) Based on the characteristics of HSI data, a spectral dimensional shifted window multi-
head self-attention is designed. It enhances the model’s capacity to capture local
information and can achieve multi-scale effect by changing the size of the window.

(2) A spatial feature extraction module based on spatial attention mechanism is designed
to improve the model’s ability to characterize spatial features.

(3) A spatial position encoding is designed before each transformer encoder to deal with
the lack of spatial structure of the data after mapping to linear.
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(4) Three publicly accessible HSI datasets are used to test the proposed model, which is
compared with advanced deep learning models. The proposed model is extremely com-
petitive.

The rest of this paper is organized as follows: Section 2 discusses the related work on
HSI classification using deep learning, which includes transformer. Section 3 describes the
proposed model and the design method for each component. Section 4 presents the three
HSI datasets, as well as the experimental setup, results, corresponding analysis. Section 5
concludes with a summary and outlook of the full paper.

2. Related Work

2.1. Deep-Learning-Based Methods for HSI Classification

Deep learning has developed quickly, more and more researchers are using deep
learning methods(e.g., RNNs, CNNs, GCNs, CapsNet, LSTM) to the classification tasks
of HSI [20,22,23,29–31,33,34]. Mei et al. [51] constructed a network based on bidirectional
long short-term memory (Bi-LSTM) for HSI classification. Zhu et al. [52] proposed an end-
to-end residual spectral–spatial attention network (RSSAN) for HSI classification, which
consists of spectral and spatial attention modules for spectral band and spatial information
adaptive selection. Song et al. [53] created a deep feature fusion network (DFFN) to solve
the negative effects of excessively increasing network depth.

Due to CNN’s excellent capability of taking the local spatial context information and it’s
outstanding capabilities in natural picture processing, many CNN-based HSI classification
models have emerged. For example, Hang et al. [54] proposed two CNN sub-networks based
on the attention mechanism for extracting the spectral and spatial features of HSI, respectively.
Chakraborty et al. [55] designed a wavelet CNN that uses layers of wavelet transforms to
display spectral features. Gong et al. [56] proposed a hybrid model that combines 2D-CNN
and 3D-CNN in order to include more in-depth spatial and spectral features while using
fewer learning samples. Hamida et al. [57] introduced a new 3-D DL method that permits the
processing of both spectral and spatial information simultaneously.

However, each of these deep learning approaches has some respective drawbacks that
can limit the model performance when processing HSI classification tasks. For CNN, it is
good at handling two-dimensional spatial features, but since the data of HSI is stereoscopic
and contains a large amount of information in the spectral dimension. It’s possible that
CNN will have trouble extracting the spectral features. Moreover, although CNNs have
achieved good results by relying on their local feature focus, the inability to deal with
global dependencies limits their performance when processing spectral information in the
form of long sequences. These shortcomings will be addressed in the transformer.

2.2. Vision Transformers for Image Classification

With the increasing use of transformers in computer vision, researchers have begun to
consider images in terms of sequential data, such as ViT [42] and Swin-transformer [43]
etc. Fang et al. [58] proposed MSG-Transformer, which presents a specialized token in
each region as a messenger (MSG). Information can be transmitted flexibly among areas
and computational cost is decreased by manipulating these MSG tokens. Guo et al. [59]
proposed CMT, which combines the advantages of CNN and ViT, a new hybrid transformer-
based network that captures long-range dependencies using transformers and extracts local
information using CNN. Chen et al. [60] designed MobileNet and transformer in parallel,
connected in the middle by a two-way bridge. This structure benefits from MobileNet for
local processing and Transformer for global communication.

An increasing number of researchers are applying transformer to HSI classification
tasks. Hong et al. [44] proposed a model called SpectralFormer (SF) for HSI classifi-
cation, which divides neighboring bands into the same token for learning features and
connects encoder blocks across layers, but the spatial information in HSI was not considered.
Sun et al. [45] proposed the Spectral-Spatial Feature Tokenization Transformer (SSFTT) to
capture high-level semantic information and spectral-spatial features, resulting in a large
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performance improvement. Ayas et al. [61] designs a spectal-swin module in front of the
swin transformer, which extracts spatial and spectral features and fuses them with Conv
2-D operation and Conv 3-D operation, respectively. Mei et al. [47] proposed the Group-
Aware Hierarchical Transformer (GAHT) to restrict the MSA to a local spatial-spectral
range by using a new group pixel embedding module, which enables the model to have
improved capability of local feature extraction. Yang et al. [46] proposed a hyperspectral
image transformer (HiT) classification network that captures subtle spectral differences
and conveys local spatial context information by embedding convolutional operations in
the transformer structure, however it is not effective in capturing local spectral features.
Transformer is increasingly used in the field of HSI classification and we believe it has great
potential for the future.

3. Methodology

In this section, we will introduce the proposed spectral-swin transformer (SSWT)
with spatial feature extraction enhancement, which will be described in four aspects: the
overall architecture, spatial feature extraction module(SFE), spatial position encoding(SPE),
and spectral swin-transformer module.

3.1. Overall Architecture

In this paper, we design a new transformer-based method SSWT for the HSI clas-
sification. SSWT consists of two major Components for solving the challenges in HSI
classification, namely, spatial feature extraction module(SFE) and spectral swin(S-Swin)
transformer module. An overview of the proposed SSWT for the HSI classification is
shown in Figure 1. The input to the model is a patch of HSI. the data is first input to SFE
to perform initial spatial feature extraction, the module consists of convolution layers and
spatial attention. In Section 3.2, it is explained in further detail. The data is then flattened
and entered into the s-swin transformer module. A spatial position encoding is added
in front of each s-swin transformer layer to add spatial structure to the data. This part
will be described in Section 3.3. The s-swin transformer module uses the spectral-swin
self attention, which will be introduced in Section 3.4. The final classification results are
obtained by linear layers.

Figure 1. Overall structure of the proposed SSWT model for HSI classification.

3.2. Spatial Feature Extraction Module

Due to transformer’s lack of ability in handling spatial information and local features,
we designed a spatial feature extraction (SFE) module to compensate. It consists of two
parts, the first one consists of convolutional layers to preliminary extraction of spatial
features and batch normalization to prevent overfitting. The second part is a spatial
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attention mechanism, which aims to enable the model to learn the important spatial
locations in the data. The structure of SFE is shown in Figure 1.

For the input HSI patch cube I ∈ RH×W×C, where H × W is the spatial size and C is
the number of spectral bands. Each pixel space in I consists of C spectral dimensions and
forms a one-hot category vector S = [s1, s2, s3, · · · , sn] ∈ R1×1×n, where n is the number of
ground object classes.

Firstly, the spatial features of HSI are initially extracted by CNN layers, and the
formula is shown as follows:

X = GELU

(
BN
(

Conv
(

I
)))

(1)

where Conv(·) represents the convolution layer. BN(·) represents batch normalization.
GELU(·) denotes the activation function. The formula for the convolution layer is
shown below:

Conv(I) =
J

||
j=0

(I ∗ Wr1×r2
j + bj) (2)

where I is the input, J is the number of convolution kernels, Wr1×r2
j is the jth convolution

kernel with the size of r1 × r2, and bj is the jth bias. || denotes concatenation, and ∗ is
convolution operation.

Then, the model may learn important places in the data thanks to a spatial attention
mechanism (SA). The structure of SA is shown in Figure 2. For an intermediate feature
map X ∈ RH′×W ′×C(H′ × W ′ is the spatial size of X), the process of SA is shown in the
following formula:

SM = MaxPooling(X) (3)

SA = AvgPooling(X) (4)

XSA = σ

(
Conv

(
Concat

(
SM, SA

)))
⊗ X (5)

MaxPooling and AvgPooling are global maximum pooling and global average pooling
along the channel direction. Concat denotes concatenation in the channel direction. σ is
activation function. ⊗ denotes the elementwise multiplication.

Figure 2. The structure of the spatial attention in SFE.

3.3. Spatial Position Encoding

The HSI of the input transformer is mapped to linear data, which can damage the
spatial structure of HSI. To describe the relative spatial positions between pixels and to
maintain the rotational invariance of samples, a spatial position encoding (SPE) is added
before each transformer module.

The input to HSI classification is a patch of a region, but only the label of the center
pixel is the target of classification. The surrounding pixels can provide spatial information
for the classification of center pixel, and their importance tends to decrease with the distance
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to the center. SPE is to learn such a center-important position encoding. The pixel positions
of a patch is defined as follows.

pos(xi, yi) = |xi − xc|+ |yi − yc|+ 1 (6)

where (xc, yc) denotes the coordinate of central position of the sample, that is the pixel to be
classified. (xi, yi) denotes the coordinates of other pixels in the sample. The visualization
of SPE when the spatial size of the sample is 7 × 7 can be seen in Figure 3. The pixel in
the central position is unique and most important, and the other pixels are given different
position encoding depending on the distance from the center.

To flexibly represent the spatial structure in HSI, the learnable position encoding are
embedded in the data:

Y = X + spe(P) (7)

where X is the HSI data, and P represents the position matrix (like Figure 3) constructed
according to Equation (6). spe(·) is a learnable array that takes the position matrix as a
subscript to get the final spatial position encoding. Finally, the position encoding is added
to the HSI data.

Figure 3. SPE in a sample with the spatial size is 7 × 7.

3.4. Spectral Swin-Transformer Module

The structure of the spectral swin-transformer (S-SwinT) module is shown in Figure 1.
Transformer is good at processing long dependencies and lacks the ability to extract local
features. Inspired by swin-transformer [43], window-based multi-head self-attention (MSA)
is used in our model. Because the input of HSI is a patch which is usually small in spatial
size, it cannot divide the window in space as Swin-T does. Considering the rich data of HSI
in the spectral dimension, a window of spectral shift was designed for MSA, called spectral
window multi-head self-attention (S-W-MSA) and spectral shifted window multi-head
self-attention (S-SW-MSA). MSA within windows can effectively improve local feature
capturing, and window shifting allows information to be exchanged in the neighboring
windows. MSA can be expressed by the following formula:

Z = Attn(Q, K, V) = so f tmax

(
QKT

√
dK

)
V (8)

ψ = Concat(Z1, Z2, · · · , Zh)W (9)

Q, K, V are matrices mapped from the input matrices called queries, keys and values.
dK is the dimension of K. The attention scores are calculated from Q and K. h is the head
number of MSA, W denotes the output mapping matrix., and ψ represents the output
of MSA.

As shown in Figure 4, the size of input is assumed to be H × W × C, where H × W is
the space size and C is the number of spectral bands. Given that all windows’ size is set to
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C/4, the window is divided uniformly for the spectral dimension. The size of each window
after division is [C/4, C/4, C/4, C/4]. Then MSA is performed in each window. Next the
window is moved half a window in the spectral direction, The size of each window at this
point is [C/8, C/4, C/4, C/4, C/8]. MSA is again performed in each window. Wherefore,
the process of S-W-MSA with m windows is:

Y(m) =
[
ψ(y(1))⊕ ψ(y(2))⊕, · · · ,⊕ψ(y(m))

]
(10)

where ⊕ means concat, y(i) is the data of the i-th window.

(a)

(b)

Figure 4. The structure of (a) S(W)-MSA of SwinT and (b) S-(S)W-MSA of SSWT (ours).

Compared to SwinT, the other components of the S-SwinT module remain the same
except for the design of the window, such as MLP, layer normalization (LN) and residual
connections. Figure 1 describes two nearby S-SwinT modules in each stage, which can be
represented by the following formula.

Ŷl = S-W-MSA(LN(Yl−1)) + Yl−1 (11)

Yl = MLP(LN(Ŷl)) + Ŷl (12)

Ŷl+1 = S-SW-MSA(LN(Yl)) + Yl (13)

Yl+1 = MLP(LN(Ŷl+1)) + Ŷl+1 (14)
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where S-W-MSA and S-SW-MSA denote the spectral window based and spectral shifted
window based MSA, Ŷl and Yl are the outputs of S-(S)W-MSA and MLP in block l.

4. Experiment

In this section, we conducted extensive experiments on three benchmark datasets to
demonstrate the effectiveness of the proposed method, including Pavia University (PU),
Salinas (SA) and Houston2013 (HU).

4.1. Dataset

The three datasets that utilised in the experiments are detailed here.

(1) Pavia University:The Reflective Optics System Imaging Spectrometer (ROSIS) sensor
acquired the PU dataset in 2001. It comprises 115 spectral bands with wavelengths
ranging from 380 to 860 nm. Following the removal of the noise bands, there are
now 103 open bands for investigation. The image measures 610 pixels in height and
340 pixels in width. The collection includes 42,776 labelled samples of 9 different land
cover types.

(2) Salinas: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor ac-
quired the SA dataset in 1998. The 224 bands in the original image have wavelengths
between 400 and 2500 nm. 204 bands are used for evaluating after the water absorption
bands have been removed. The data has 512 and 217 pixels of height and width, respec-
tively. There are 16 object classes represented in the dataset’s 54,129 marked samples.

(3) Houston2013: The Hyperspectral Image Analysis Group and the NSF-funded Airborne
Laser Mapping Center (NCALM) at the University of Houston in the US provided the
Houston 2013 dataset. The 2013 IEEE GRSS Data Fusion Competition used the dataset
initially for scientific research. It has 144 spectral bands with wavelengths between
0.38 and 1.05 m. This dataset contains 15 classes and measures 349 × 1905 pixels with
a 2.5 m spatial resolution.

We divided the label samples in different ways for each dataset. Tables 1–3 provide
specifics on the number of each class for the three dataset training, validation, and testing
sets. False-color map and ground-truth map of three datasets are shown in Figures 5–7.

(a) (b)

Figure 5. Visualization of PU Datasets. (a) False-color map. (b) Ground-truth map.
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(a) (b)

Figure 6. Visualization of SA Datasets. (a) False-color map. (b) Ground-truth map.

(a)

(b)

Figure 7. Visualization of HU Datasets. (a) False-color map. (b) Ground-truth map.

Table 1. Number of training, validation and testing samples for the PU dataset.

No. Name Train. Val. Test.

1 Asphalt 83 83 6465
2 Meadows 233 233 18,183
3 Gravel 26 26 2047
4 Trees 38 38 2987
5 Painted metal sheets 17 17 1311
6 Bare Soil 63 63 4903
7 Bitumen 17 17 1297
8 Self-Blocking Bricks 46 46 3590
9 Shadows 12 12 923

- Total 535 535 41,706

214



Remote Sens. 2023, 15, 2696

Table 2. Number of training, validation and testing samples for the SA dataset.

No. Name Train. Val. Test.

1 Brocoli_green_weeds_1 25 25 1959
2 Brocoli_green_weeds_2 47 47 3633
3 Fallow 25 25 1927
4 Fallow_rough_plow 17 17 1358
5 Fallow_smooth 33 33 2611
6 Stubble 49 49 3860
7 Celery 45 45 3490
8 Grapes_untrained 141 141 10,989
9 Soil_vinyard_develop 78 78 6048
10 Corn_senesced_green_weeds 41 41 3196
11 Lettuce_romaine_4wk 13 13 1041
12 Lettuce_romaine_5wk 24 24 1879
13 Lettuce_romaine_6wk 11 11 893
14 Lettuce_romaine_7wk 13 13 1043
15 Vinyard_untrained 91 91 7086
16 Vinyard_vertical_trellis 23 23 1762

- Total 676 676 52,775

Table 3. Number of training, validation and testing samples for the HU dataset.

No. Name Train. Val. Test.

1 Healthy grass 31 31 1188
2 Stressed grass 31 31 1191
3 Synthetic grass 17 17 662
4 Trees 31 31 1182
5 Soil 31 31 1180
6 Water 8 8 309
7 Residential 32 32 1205
8 Commercial 31 31 1182
9 Road 31 31 1189
10 Highway 31 31 1166
11 Railway 31 31 1173
12 Parking Lot 1 31 31 1171
13 Parking Lot 2 12 12 446
14 Tennis Court 11 11 407
15 Running Track 17 17 627

- Total 376 376 14,278

4.2. Experimental Setting

(1) Evaluation Indicators: To quantitatively analyse the efficacy of the suggested method
and other methods for comparison, four quantitative evaluation indexes are intro-
duced: overall accuracy (OA), average accuracy (AA), kappa coefficient (κ), and the
classification accuracy of each class. A better classification effect is indicated by a
higher value for each indicator.

(2) Configuration: All verification experiments for the proposed technique were per-
formed in the PyTorch environment using a desktop computer with an Intel(R)
Core(TM) i7-10750H CPU, 16GB of RAM, and an NVIDIA Geforce GTX 1660Ti 6-
GB GPU. The learning rate was initially set to 1 × 10−3 and the Adam optimizer was
selected as the initial optimizer. The size of each training batch was set to 64. Each
dataset received 500 training epochs.
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4.3. Parameter Analysis

4.3.1. Influence of Patch Size

Patch size is the spatial size of the input patches, which determines the spatial informa-
tion that the model can utilize when classifying HSIs. Therefore, The model’s performance
is influenced by the patch size. A too large patch size will increase the computational
burden of the model. In this section we compare a set of patch sizes {3, 5, 7, 9, 11, 13} to
explore the effect of patch size on the model. The experimental results about patch size on
the three datasets are shown in Figure 8. A similar trend was observed in all three datasets,
OA first increased and then stabilized with increasing patch size. Specifically, the highest
value of OA is achieved when the patch size is 9 in the PU and HU datasets, and the highest
value of OA is achieved when the patch size is 11 in the SA dataset.

The size of patch is positively correlated with the spatial information contained in
the patch. Increasing the patch means that the model can learn more spatial information,
which will be beneficial to improve OA. And when the patch increases to a certain size,
the distance between the pixels in the newly region and the center pixel is too far, and the
spatial information that can be provided is of little value. So the improvement of OA is not
much, and the OA will tend to be stable at this time.

Figure 8. Overall accuracy(%) with different patch sizes on the three datasets. The window numbers
in transformer layers is set to [1, 2, 2, 4].

4.3.2. Influence of Window Number

In proposed S-SW-MSA, the number of windows is a parameter that can be set de-
pending on the characteristics of the dataset. Moreover, the number of windows can be
different for each transformer layer in order to extract multiple scales of features. We set
up six sets of experiments, the model contains four transformer layers in the first four sets,
and five transformer layers in the last two sets. the numbers in [] indicate the number of
windows of S-SW-MSA in each transformer layer. The experimental results on the three
datasets are shown in Table 4. According to the experimental results, the best OA for each
dataset was obtained for different window number settings, and the best OA was obtained
for the PU, SA and HU datasets in the 4th, 2nd and 6th group settings, respectively. We
also found that increasing the number of transformer layers does not necessarily increase
the performance of the model. For example, the best OA is achieved when the number of
transformer layers is 4 for the PU and SA datasets and 5 for the HU dataset. Because the
features of each dataset are different, the parameter settings will change accordingly.
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Table 4. Overall accuracies (%) of proposed model with different number of windows in transformer
layers on SA, PU and HU datasets. The patch size is set to 9.

Windows Size PU SA HU

[1, 1, 2, 2] 97.05 97.56 93.24
[1, 2, 2, 4] 97.86 97.80 93.35
[2, 2, 4, 4] 98.33 96.93 93.31
[2, 2, 4, 8] 98.37 97.70 93.58
[1, 1, 2, 4, 8] 98.20 96.25 93.38
[2, 2, 4, 4, 8] 98.25 96.31 93.69

4.4. Ablation Experiments

To sufficiently demonstrate that proposed method is effective, we conducted ablation
experiments on the Pavia University dataset. With ViT as the baseline, the components of
the model are added separately: S-Swin, SPE and SFE. In total, there are 5 combinations.
The experimental results are shown in the Table 5. The classification overall accuracy of
ViT without any improvement was 84.43%. SPE, SFE and S-Swin are proposed improve-
ments for the ViT backbone network, which can respectively increase classification overall
accuracy of 1.69%, 7.21% and 7.87% after adding into the model. The classification overall
accuracy of applying the two improvements to the model together can reach 93.78%, which
is higher than baseline by 9.35%. It is considered to be a great result for the improved pure
transformer, but it’s a little lower than our final result. After the SFE was added to the
model, the classification overall accuracy improved by 4.59%, eventually reaching 98.37.

Table 5. Ablation experiments in PU.

Method
Module (%) Metric (%)

S-Swin SPE SFE OA(%) AA(%) κ × 100 (%)

ViT(Baseline) � � � 84.43 78.06 78.95
ViT � � � 86.12 80.18 81.31
ViT � � � 91.64 90.43 88.97
SSWT(Ours) � � � 92.30 89.58 89.75
SSWT(Ours) � � � 93.78 91.17 91.74
SSWT(Ours) � � � 98.37 97.25 97.84

4.5. Classification Results

The proposed model’s outcomes are compared with those of the advanced deep
learning models: a LSTM based network (Bi-LSTM) [51], a 3-D CNN-based deep learn-
ing network (3D-CNN) [57], a deep feature fusion network (DFFN) [53], a RSSAN [52],
and some transformer based model include a Vit, Swin-transformer (SwinT) [43], a Spec-
tralFormer (SF) [44], a Hit [46] and a SSFTT [45].

Tables 6–8 show the OA, AA, κ and the accuracy of each category for each model’s
classification on the three public datasets. Each result is the average of repeating the
experiment five times. The best results are shown in bold. As the results show, proposed
SSWT performs the best. On the PU dataset, SSWT is 1.02% higher than SSFTT, 3.85%
higher than HiT, 9.01% higher than SwinT and 1.51% higher than RSSAN in terms of OA.
Moreover, SSWT outperforms other models in terms of AA and κ. SSWT achieved the
highest classification accuracy in 7 out of 9 categories. On the SA dataset, the advantage of
SSWT is more prominent. SSWT is 3.22% higher than SSFTT, 3.99% higher than HiT, 7.10%
higher than SwinT, 2.64% higher than RSSAN, and 3.01% higher than DFFN in terms of
OA. The same advantage was achieved for SSWT in AA and κ. SSWT achieved the highest
classification accuracy in 11 out of 16 categories. Similar results can be observed in HU
dataset, where SSWT achieved significant advantages in all three metrics of OA, AA and κ.
SSWT achieved the highest classification accuracy in 6 out of 15 categories.
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Table 6. Classification results of the PU dataset.

Class Bi-LSTM 3D-CNN RSSAN DFFN Vit SwinT SF Hit SSFTT SSWT

1 91.67 ± 0.83 95.16 ± 1.56 97.12 ± 0.57 96.66 ± 0.81 87.96 ± 1.80 93.05 ± 5.32 89.41 ± 2.23 93.72 ± 1.44 97.31 ± 1.12 98.06 ± 0.24
2 96.96 ± 1.60 98.31 ± 0.96 99.46 ± 0.11 99.05 ± 0.51 96.56 ± 3.00 96.98 ± 1.43 97.22 ± 0.76 98.66 ± 0.48 99.37 ± 0.26 99.91 ± 0.08
3 70.65 ± 9.73 36.91 ± 6.18 85.74 ± 5.05 70.37 ± 12.56 53.18 ± 19.35 29.49 ± 23.08 77.28 ± 3.19 80.42 ± 7.56 87.25 ± 5.43 94.59 ± 2.40
4 92.88 ± 2.78 95.52 ± 1.58 96.92 ± 1.32 94.22 ± 3.16 89.76 ± 2.25 92.09 ± 1.41 90.80 ± 1.92 94.74 ± 1.84 97.59 ± 1.15 97.70 ± 1.05
5 99.10 ± 0.60 99.83 ± 0.34 99.86 ± 0.17 99.97 ± 0.06 100.00 ± 0.00 99.16 ± 0.59 100.00 ± 0.00 99.95 ± 0.04 99.95 ± 0.06 99.85 ± 0.27
6 67.03 ± 14.76 49.91 ± 12.17 97.00 ± 1.09 95.07 ± 3.03 51.97 ± 7.05 88.47 ± 5.03 82.13 ± 6.02 95.54 ± 2.05 97.00 ± 1.60 98.37 ± 1.63
7 82.67 ± 3.31 46.74 ± 14.05 84.15 ± 5.66 74.68 ± 7.86 47.59 ± 8.36 45.18 ± 31.47 52.80 ± 6.23 75.17 ± 8.05 91.43 ± 3.70 91.95 ± 5.61
8 83.17 ± 3.25 89.73 ± 3.00 92.49 ± 1.51 87.38 ± 4.34 78.79 ± 8.88 92.76 ± 1.65 81.81 ± 4.44 85.83 ± 4.19 93.81 ± 1.51 95.35 ± 5.61
9 98.94 ± 0.51 98.66 ± 0.62 98.37 ± 0.96 99.57 ± 0.22 96.71 ± 1.00 76.85 ± 12.09 96.32 ± 1.38 97.16 ± 1.29 99.72 ± 0.20 99.48 ± 0.88

OA(%) 89.52 ± 1.91 86.63 ± 1.43 96.86 ± 0.36 94.74 ± 1.40 84.43 ± 1.56 89.36 ± 3.14 90.16 ± 0.89 94.52 ± 1.03 97.35 ± 0.45 98.37 ± 0.24
AA(%) 87.01 ± 1.97 78.97 ± 2.05 94.57 ± 0.84 90.77 ± 2.46 78.06 ± 2.56 79.34 ± 7.46 85.31 ± 1.20 91.24 ± 1.94 95.94 ± 0.73 97.25 ± 0.64
κ × 100 85.94 ± 2.63 81.79 ± 2.04 95.84 ± 0.48 93.00 ± 1.87 78.95 ± 2.03 85.82 ± 4.23 86.87 ± 1.21 92.74 ± 1.37 96.49 ± 0.60 97.84 ± 0.32

Table 7. Classification results of the SA dataset.

Class Bi-LSTM 3D-CNN RSSAN DFFN Vit SwinT SF Hit SSFTT SSWT

1 79.24 ± 39.63 97.09 ± 1.46 99.58 ± 0.48 97.12 ± 0.89 90.19 ± 2.51 72.30 ± 1.87 95.05 ± 1.49 98.69 ± 2.05 99.44 ± 0.90 99.79 ± 0.43
2 98.94 ± 0.55 99.90 ± 0.08 99.36 ± 0.87 99.58 ± 0.14 98.05 ± 1.17 97.24 ± 1.92 99.32 ± 0.18 99.32 ± 0.35 99.80 ± 0.34 99.80 ± 0.17
3 85.20 ± 12.23 88.23 ± 4.35 97.01 ± 1.63 95.01 ± 3.54 87.52 ± 1.83 89.31 ± 2.96 92.89 ± 1.29 95.51 ± 2.29 98.41 ± 1.04 98.48 ± 1.54
4 97.79 ± 1.21 98.22 ± 1.10 98.56 ± 0.70 96.67 ± 1.39 94.11 ± 1.43 96.12 ± 1.50 94.05 ± 2.02 98.82 ± 0.51 99.59 ± 0.56 98.53 ± 1.23
5 96.40 ± 1.22 93.41 ± 2.41 96.06 ± 1.37 96.87 ± 1.04 82.59 ± 2.93 97.68 ± 0.76 93.24 ± 1.83 96.03 ± 2.17 98.28 ± 0.77 98.74 ± 0.80
6 99.46 ± 0.37 99.79 ± 0.32 99.36 ± 1.00 99.84 ± 0.30 99.44 ± 0.64 98.89 ± 1.29 99.68 ± 0.36 99.99 ± 0.02 99.98 ± 0.02 99.96 ± 0.06
7 98.84 ± 0.36 99.47 ± 0.23 99.28 ± 0.40 99.62 ± 0.28 98.05 ± 0.71 97.79 ± 0.92 98.81 ± 0.47 98.88 ± 0.62 99.44 ± 0.46 99.72 ± 0.42
8 83.66 ± 3.85 82.53 ± 2.36 90.93 ± 2.87 89.16 ± 1.74 82.79 ± 1.93 87.64 ± 1.38 85.03 ± 2.46 88.55 ± 1.73 90.08 ± 4.06 95.87 ± 1.47
9 97.84 ± 1.34 98.51 ± 1.11 99.66 ± 0.26 98.88 ± 0.80 96.38 ± 0.57 99.16 ± 0.63 98.05 ± 0.64 99.62 ± 0.37 99.53 ± 0.24 99.92 ± 0.06
10 81.10 ± 8.62 89.40 ± 2.50 95.58 ± 2.48 95.39 ± 1.01 75.44 ± 3.81 89.52 ± 3.74 91.23 ± 2.28 93.74 ± 2.38 95.73 ± 2.58 97.07 ± 1.88
11 83.59 ± 6.83 73.95 ± 4.65 93.37 ± 5.75 92.56 ± 5.81 70.47 ± 15.29 83.99 ± 14.49 89.86 ± 4.74 91.16 ± 6.19 94.66 ± 4.66 95.64 ± 4.52
12 98.84 ± 0.61 99.21 ± 0.56 99.36 ± 0.79 99.97 ± 0.03 98.67 ± 1.31 95.76 ± 0.75 98.45 ± 1.46 99.30 ± 0.64 99.80 ± 0.28 99.78 ± 0.45
13 94.78 ± 2.72 99.66 ± 0.07 98.92 ± 0.99 99.98 ± 0.04 96.28 ± 2.05 94.92 ± 6.31 98.61 ± 0.92 98.99 ± 1.12 99.06 ± 1.66 99.87 ± 0.18
14 90.20 ± 2.51 97.24 ± 1.05 96.63 ± 0.57 98.52 ± 0.76 96.51 ± 1.38 94.47 ± 1.04 95.03 ± 2.32 97.16 ± 0.77 95.61 ± 2.88 99.23 ± 0.55
15 78.87 ± 9.66 73.91 ± 2.47 86.60 ± 3.27 87.97 ± 2.81 72.03 ± 5.50 86.75 ± 6.26 79.87 ± 3.00 81.79 ± 3.34 81.36 ± 6.09 94.10 ± 2.05
16 90.27 ± 9.62 92.36 ± 1.46 96.67 ± 1.27 95.16 ± 2.32 91.57 ± 0.75 92.77 ± 3.30 95.35 ± 0.99 96.79 ± 1.67 97.20 ± 1.02 98.40 ± 1.08

OA(%) 89.66 ± 3.03 90.22 ± 0.70 95.16 ± 0.35 94.79 ± 0.80 87.58 ± 0.37 90.70 ± 2.38 91.81 ± 0.73 93.81 ± 0.56 94.58 ± 0.41 97.80 ± 0.25
AA(%) 90.94 ± 3.31 92.68 ± 0.71 96.68 ± 0.49 96.39 ± 0.57 89.38 ± 0.51 90.02 ± 3.99 94.03 ± 0.48 95.90 ± 0.24 96.75 ± 0.26 98.43 ± 0.35
κ × 100 88.49 ± 3.39 89.11 ± 0.77 94.61 ± 0.39 94.20 ± 0.89 86.17 ± 0.41 89.63 ± 2.67 90.89 ± 0.81 93.10 ± 0.62 93.97 ± 0.46 97.55 ± 0.28

Table 8. Classification results of the HU dataset.

Class Bi-LSTM 3D-CNN RSSAN DFFN Vit SwinT SF Hit SSFTT SSWT

1 84.09 ± 4.77 89.90 ± 6.62 95.05 ± 2.77 94.71 ± 5.79 90.72 ± 6.21 94.56 ± 2.55 95.05 ± 5.10 93.37 ± 4.54 93.96 ± 4.32 95.13 ± 4.45
2 90.60 ± 7.71 81.28 ± 6.08 98.05 ± 1.19 97.75 ± 1.06 83.93 ± 9.70 93.93 ± 5.83 93.53 ± 3.77 97.78 ± 0.87 98.71 ± 1.11 98.77 ± 1.18
3 75.14 ± 17.70 91.81 ± 4.04 98.67 ± 0.81 99.49 ± 0.74 88.01 ± 8.50 96.68 ± 1.98 97.19 ± 2.01 98.64 ± 0.91 99.52 ± 0.89 99.46 ± 0.67
4 90.83 ± 3.70 91.91 ± 0.35 94.06 ± 1.91 91.34 ± 0.74 85.63 ± 3.35 94.42 ± 2.77 89.54 ± 1.79 95.35 ± 1.99 96.65 ± 2.55 95.75 ± 1.55
5 92.86 ± 2.93 95.97 ± 1.83 98.29 ± 0.77 98.44 ± 0.74 95.86 ± 1.75 97.99 ± 0.74 96.97 ± 0.92 98.69 ± 0.98 99.54 ± 0.49 99.93 ± 0.08
6 52.43 ± 31.32 72.69 ± 2.15 80.58 ± 6.70 86.15 ± 6.72 6.93 ± 7.34 71.20 ± 14.20 63.88 ± 5.20 81.49 ± 2.85 90.42 ± 6.32 92.62 ± 5.67
7 72.93 ± 9.32 84.15 ± 2.50 87.09 ± 3.56 84.60 ± 3.98 64.32 ± 11.11 71.84 ± 14.62 74.67 ± 4.06 81.16 ± 5.29 86.22 ± 5.43 88.70 ± 4.61
8 55.74 ± 5.24 55.87 ± 6.14 78.88 ± 3.64 79.10 ± 3.82 66.84 ± 6.80 73.69 ± 9.90 76.31 ± 2.76 78.85 ± 2.03 82.79 ± 2.81 85.08 ± 3.38
9 73.05 ± 5.75 81.90 ± 2.13 81.77 ± 4.72 84.24 ± 4.75 66.24 ± 5.56 73.28 ± 2.75 72.94 ± 6.60 83.62 ± 5.81 89.96 ± 4.24 87.47 ± 3.31
10 39.43 ± 20.49 48.10 ± 12.51 89.76 ± 0.52 90.22 ± 5.12 63.29 ± 5.92 78.56 ± 2.66 81.13 ± 5.79 86.14 ± 5.11 93.60 ± 1.29 96.05 ± 3.71
11 66.55 ± 10.85 60.66 ± 2.63 82.85 ± 4.35 82.46 ± 3.64 58.67 ± 3.08 76.21 ± 0.37 68.80 ± 6.54 79.52 ± 4.94 86.36 ± 2.82 87.55 ± 5.08
12 67.21 ± 9.90 58.29 ± 10.86 92.13 ± 2.73 93.10 ± 2.00 61.69 ± 6.32 87.50 ± 3.52 85.02 ± 4.18 90.96 ± 3.22 88.95 ± 5.90 97.83 ± 1.12
13 19.96 ± 14.65 59.10 ± 10.82 71.21 ± 8.17 92.47 ± 1.57 40.09 ± 16.86 71.60 ± 2.70 50.85 ± 9.67 79.28 ± 2.86 92.33 ± 2.81 90.76 ± 3.15
14 89.93 ± 8.82 93.12 ± 3.76 92.38 ± 3.91 94.74 ± 2.65 77.49 ± 4.47 89.03 ± 7.12 78.28 ± 3.02 93.96 ± 2.88 96.46 ± 2.24 94.55 ± 3.68
15 90.91 ± 8.78 99.39 ± 0.77 95.82 ± 2.62 98.88 ± 0.88 91.48 ± 3.12 96.65 ± 1.75 95.15 ± 2.84 98.47 ± 1.03 98.66 ± 1.13 98.63 ± 1.56

OA(%) 72.60 ± 3.03 76.73 ± 1.69 89.76 ± 0.39 90.62 ± 0.79 72.80 ± 1.54 84.78 ± 2.39 82.97 ± 0.99 89.16 ± 1.03 92.47 ± 0.97 93.69 ± 1.07
AA(%) 70.78 ± 4.49 77.61 ± 1.80 89.11 ± 0.61 91.18 ± 0.86 69.41 ± 0.73 84.48 MSA 1.67 81.29 ± 1.16 89.15 ± 0.88 92.94 ± 1.01 93.89 ± 1.07
κ × 100 70.34 ± 3.29 74.84 ± 1.83 88.93 ± 0.42 89.86 ± 0.85 70.58 ± 1.64 83.55 MSA 2.58 81.58 ± 1.07 88.28 ± 1.11 91.86 ± 1.05 93.18 ± 1.16

We visualized the prediction results of each model on the samples to compare the
performance of the models, and the visualization results of each model on the three datasets
are shown in Figures 9–11 Proposed SSWT has less noise in all three datasets compared to
other models, and the classification result of SSWT are closest to the ground truth. In the
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PU dataset, the blue area in the middle is misclassified by many models, and the SSWT
result in the fewest errors. In the SA dataset, the pink area and the green area on the top
left show a number of errors in the classification results of other models, and the SSWT
classification results are the smoothest. A similar situation is observed in the HU dataset.
The superiority of proposed model is further demonstrated.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Classification maps of different methods in PU dataset. (a) Bi-LSTM. (b) 3D-CNN.
(c) RSSAN. (d) DFFN. (e) Vit. (f) SwinT. (g) SF. (h) Hit. (i) SSFTT. (j) Proposed SSWT.

(a) (b) (c) (d) (e)

Figure 10. Cont.
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(f) (g) (h) (i) (j)

Figure 10. Classification maps of different methods in SA dataset. (a) Bi-LSTM. (b) 3D-CNN.
(c) RSSAN. (d) DFFN. (e) Vit. (f) SwinT. (g) SF. (h) Hit. (i) SSFTT. (j) Proposed SSWT.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 11. Classification maps of different methods in HU dataset. (a) Bi-LSTM. (b) 3D-CNN.
(c) RSSAN. (d) DFFN. (e) Vit. (f) SwinT. (g) SF. (h) Hit. (i) SSFTT. (j) Proposed SSWT.

4.6. Robustness Evaluation

In order to evaluate the robustness of the proposed model, we conducted experiments
with the proposed model and other models under different numbers of training samples.
Figure 12 shows the experimental results on three datasets, we selected 0.5%, 1%, 2%, 4%,
and 8% of the samples in turn as training data for the PU and SA dataset , while 2%, 4%, 6%,
8% and 10% for the HU dataset. It can be observed that the proposed SSWT is performing
best in every situation, especially in the case of few training samples. The robustness
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of proposed SSWT and its superiority in the case of small samples can be demonstrated.
Taking the PU dataset as an example, most of the models achieve high accuracy at 8% of
the training percent, with SSWT having a small advantage. And as the training percent
decreases, SSWT has higher accuracy compared to other models. Similar results were
found on the SA and HU datasets, where SSWT showed excellent performance for all
training percents.

(a)

(b)

(c)

Figure 12. Classification results in different training percent of samples on the three datasets. (a) PU.
(b) SA. (c) HU.
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5. Conclusions

In this paper, we summarize the shortcomings of the existing ViT for HSI classification
tasks. For the lack of ability to capture local contextual features, we use the self-attentive
mechanism of shifted windows. The corresponding design is made for the characteristics
of HSI, i.e., the spectral shifted window self-attention, which effectively improves the local
feature extraction capability. For the insensitivity of ViT to spatial features and structure, we
designed the spatial feature extraction module and spatial position encoding to compensate.
The superiority of the proposed model has been verified by experimental results across
three public HSI datasets.

In future work, we will improve the calculation of S-SW-MSA to reduce its time
complexity. In addition, we will continue our research based on the transformer and try to
achieve higher performance with a model of pure transformer structure.
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Abstract: Moving target detection in optical remote sensing is important for satellite surveillance
and space target monitoring. Here, a new moving point target detection framework under a low
signal-to-noise ratio (SNR) that uses an end-to-end network (1D-ResNet) to learn the distribution
features of transient disturbances in the temporal profile (TP) formed by a target passing through a
pixel is proposed. First, we converted the detection of the point target in the image into the detection
of transient disturbance in the TP and established mathematical models of different TP types. Then,
according to the established mathematical models of TP, we generated the simulation TP dataset to
train the 1D-ResNet. In 1D-ResNet, the structure of CBR-1D (Conv1D, BatchNormalization, ReLU)
was designed to extract the features of transient disturbance. As the transient disturbance is very
weak, we used several skip connections to prevent the loss of features in the deep layers. After
the backbone, two LBR (Linear, BatchNormalization, ReLU) modules were used for further feature
extraction to classify TP and identify the locations of transient disturbances. A multitask weighted
loss function to ensure training convergence was proposed. Sufficient experiments showed that this
method effectively detects moving point targets with a low SNR and has the highest detection rate
and the lowest false alarm rate compared to other benchmark methods. Our method also has the best
detection efficiency.

Keywords: moving point target; low SNR; transient disturbance; temporal profile; skip connection

1. Introduction

The detection of moving targets has important applications in security monitoring,
military reconnaissance, and satellite detection [1–3]. In some scenarios, such as early
warning against space debris [4] and small faint bodies in near-Earth space or against naval
ships and fighters, optical remote sensing detection has the characteristics of long distance
and large field of view [5]. In this condition, the fast-moving target is more like a point in
the image. The point target does not have shape, size, texture, or other spatial information
and may even be submerged in background and clutter, resulting in a very low space-time
signal-to-noise ratio (SNR) of the target and making it difficult to detect. Therefore, the
problem of moving target detection in optical remote sensing images at a long distance and
under a large field of view can be transformed into the problem of moving point target
detection under a low SNR, which is important for effective detection.

There are currently three detection methods based on the temporal and spatial fea-
tures of moving point targets: spatial-based detection, temporal-based detection, and
spatiotemporal-based detection.

1.1. Spatial-Based Detection Methods

Spatial-based detection mainly realizes detection by enhancing small targets and
suppressing the background or by converting the detection problem into an optimization
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problem of separating sparse and low-rank matrices. For example, the top-hat algorithm
first calculates an image to estimate the background and then subtracts the background
from the original image to obtain small targets [6]. The max-mean filter and max-median
filter suppress clutter by filtering in four directions and then subtracting the background to
obtain candidate targets [7]. Local contrast measure (LCM) and its improved algorithms,
such as MPCM, HWLCM, MLCM-LEF, and WVCLCM, use local contrast information to
enhance the point target and suppress the background [8–12]. In contrast to the above-
mentioned methods, IPI-based methods use the background non-local self-correlation
property to transform the small target detection problem into an optimization problem of
the recovery of low-rank and sparse matrices and use principal component pursuit to solve
the problem [13–16]. Xia et al. considered both the global sparsity and local contrast of
small targets and proposed a modified graph Laplacian model (MGLM) with local contrast
and consistency constraints [17]. Because a point target with a low SNR lacks effective
spatial information, the above methods cannot separate the target from the background.

In recent years, with the development of deep learning, point target detection algo-
rithms based on convolutional neural networks have emerged endlessly, including ALCNet,
GLFM, ISTDU, ISTNet, MLCL, and APANet [18–23]. The principles of these CNN-based
methods are predominantly similar to those of traditional methods. Multilayer neural
networks are used to enhance the point targets, suppress the background, and box the target
position. Although the CNN-based method has improved the feature extraction ability
of the target, it still cannot achieve excellent detection for low-SNR point targets lacking
spatial information. In addition, the track of the target cannot be obtained by detecting
a single image. In early warning systems, it is still necessary to detect image sequences.
Because CNN-based detection methods take a long time to detect image sequences, they
are inefficient.

1.2. Temporal-Based Detection Methods

Temporal-based detection refers to the detection of image sequences using the target’s
movement information in temporal terms, such as optical flow [24], temporal difference [25],
dynamic background modeling (DBM) [26,27], and tracking before detection (TBD) [28].
Optical flow uses the correlation between adjacent frames in the image sequence and
the changes of pixels over time to find the corresponding relationship between moving
targets in the frames in order to calculate the motion information of moving targets. This
method assumes that the brightness of the target is constant, that the motion between
adjacent frames is derivable, and that the motion of adjacent pixels is similar. There
are numerous constraints and few scenes that satisfy this assumption. In addition, the
optical flow method is time-consuming and struggles to meet real-time requirements. The
temporal difference method makes use of the gradual change of the background in the
image sequence to directly identify differences in the adjacent frames. If there are moving
targets in the sequence, this will lead to a large difference in the intensity of the adjacent
frames. However, the temporal difference is sensitive to background noise and has a
poor detection effect for point targets with a low SNR. The DBM models the background
in the image sequence and determines whether the pixel belongs to the foreground or
background according to the established model to segment the moving target. The detection
performance of this method depends on the modeling accuracy. It is difficult to distinguish
the moving point target from the background under a low SNR, and the target is easily
misjudged as background. Thus, this method’s robustness is poor. TBD is a commonly used
algorithm for detecting the traces of small moving targets. This algorithm accumulates
multiple frames, searches for every possible trace of targets, and finally decides on the
searched trace. Therefore, it does not need to detect every single image, but it directly
outputs the target’s motion trace. However, this method requires excessive time to search.
Moreover, if the target is weak, the target cannot be found effectively.
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1.3. Spatiotemporal-Based Detection Methods

Researchers have proposed spatiotemporal-based detection methods that combine
spatial and temporal information. For example, Zhang et al. proposed a three-dimensional
filtering detection method, which takes a segment of an image sequence as the input and
uses multiple matching filters to suppress the background in order to ultimately obtain
point targets [29,30]. Deng et al. proposed a filtering method based on spatiotemporal
local contrast, which calculates spatial and temporal local contrast, respectively, and then
performs filtering mapping on spatiotemporal local contrast to obtain detection results [31].
Lin et al. used the Pearson correlation coefficient to suppress the background in the time-
domain window and then used the target detection algorithm based on the regional gray
level to suppress the residual background and finally obtained a target motion track [32].
Zhu et al. filtered the frame first, then detected the frame’s gradient to obtain the candidate
targets, and finally supplemented local contrast information in temporal terms for spa-
tiotemporal joint judgment. Yan et al. used the top-hat algorithm to separate small targets
from the background, a grid-based density peak search algorithm and gray area growth
algorithm to identify false alarm points, and an improved KCF algorithm to achieve target
tracking for continuous frames [33]. These algorithms use the spatiotemporal information
of point targets to improve the detection effect, but their assumptions on small targets are
too strong and require considerable prior information.

1.4. TP-Based Detection Methods

These temporal-based or spatiotemporal-based methods only use a few frames and
do not fully use the temporal information of the target, and so they do not exhibit good
detection performance. Under the observation condition of staring imaging, the intensity
change of a single pixel in the image sequence over time can be regarded as a profile. If a
target passes a pixel, it will produce a transient disturbance in the temporal profile (TP) of
that pixel. If the transient disturbance can be detected, the target will be detected. Thus,
the point target detection in an image can be converted into the detection of transient
disturbances in the TP. Methods based on TP have been proposed. Liu et al. estimated
the background signal from the original TP and then subtracted it to obtain the target
signal [34,35]. Subsequently, Liu et al. performed the nonlinear adaptive filtering of TP
to extract the target signal [36]. Recently, Liu et al. used FFT and KL to calculate the
similarity between the TP and waveform to detect the target signal [37]. Niu et al. proposed
detection methods based on statistical distribution distance involving high-frame-rate
detection [38–40]. These methods are effective for TPs with a high SNR, but for TPs with a
low SNR, the target signal cannot be separated from the background signal, and the time
when the target appears in the TP cannot be identified.

The transient disturbance of the target formed by the pixels can be regarded as a
pattern that can be recognized by CNN-1D. Therefore, to overcome the problems of the
previous methods and achieve effective moving point target detection under a low SNR,
we proposed a detection framework based on transient disturbance distribution feature
learning. The framework takes the image sequence as the input and directly outputs the
track of the point target.

The main contributions of our work are as follows:

1. We converted the point target detection in the image into the detection of transient
disturbance in the TP formed by a pixel and propose a low-SNR point target detection
framework based on transient disturbance distribution feature learning.

2. In the detection framework, we designed a 1D-ResNet for transient disturbance fea-
ture learning. The 1D-ResNet can learn the distribution features of the transient
disturbance and realize the classification of the TP and the location of the transient
disturbance. In 1D-ResNet, skip connections are used to prevent the loss of the
target signal feature. To prevent gradient disappearance and gradient explosion,
the structure of the CBR-1D was designed to extract the features of the weak tran-
sient disturbance. The specially designed weighted multitask loss function ensures
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training convergence. In addition, we verified the effect of network depth on the
detection performance of 1D-ResNet and trained two networks: 1D-ResNet-8 and
1D-ResNet-16. The two networks deal with detection speed priority and detection rate
priority, respectively.

3. We formulated the TP formed by pixels and generated a simulation dataset according
to the TP formula. By combining the simulation data and real-world data, a training
and verification dataset satisfying the research of moving point target detection with a
low SNR is generated. Compared to other spatial-based and temporal-based methods,
the proposed method exhibits the best performance in terms of its detection rate, false
alarm rate, and computing efficiency. The biggest advantage of our method is that it
exhibits excellent detection performance under extremely low SNRs.

The remainder of this paper is organized as follows. Section 2 analyzes the components
of the TP and establishes mathematical models for each part. The mathematical expressions
for the target TP, background TP, and clutter TP are presented in Section 2. Section 3 details
the moving point target detection framework, including the network architectures, model
training, and the entire detection process. Section 4 presents the experimental scheme
and results. We designed experiments based on four aspects and compared our method
with other benchmark methods on test sequences. Section 5 discusses our method in
detail and compares it with other methods, followed by network ablation experiments and
visualization studies. Section 6 presents the conclusions of this study.

2. Temporal Profile Analysis

2.1. The Components of the Temporal Profile

Under the condition of staring imaging, each pixel in the image will form a TP, which
tracks the change in pixel intensity value over time. Each TP is different. What is most
important is the transient disturbance formed by the target passing through the pixel.
Therefore, all TPs can be divided into two categories: background TP and target TP [34].
The TP of any pixel under ideal clutter-free conditions can be described as follows:

TPi,j(k) =

{
ti,j(k), k1 < k < k2
bi,j(k), others

(1)

where ti,j and bi,j represent the distribution of the target TP and background TP, respec-
tively; i and j represent the row and column index of the pixel in the image, respectively; k
represents time; and k1 and k2 are the times when the target enters and leaves the pixel,
respectively. The TP formation process is illustrated in Figure 1.

Figure 1. The formation process of TP in the image sequence; x and y are the horizontal and vertical
coordinates of the image, respectively, and k is the frame number.
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Under ideal clutter-free conditions, because the view of the detector is fixed, the
background pixel intensity is constant for a short time, and the background TP can be
considered a short-time stationary signal. However, in real image processing, the imaging
results are affected by noise from different sources, including shot noise, thermal noise,
photon noise, etc. In [35], additive white Gaussian noise (AWGN) was used to model these
different noises. Thus, the actual TP can be expressed as follows:

TPi,j(k) = AN + TPi,j(k) (2)

where AN represents the AWGN.

2.2. The Target Temporal Profile

The TP of a target passing through a pixel can be regarded as a transient disturbance,
and the following formula is used to describe the target TP:

t(k) =

{
s(k), k1 < k < k2
0, others

(3)

where s(k) represents the transient disturbance caused by the appearance of the target.
The ideal imaging model of the optical system is pinhole imaging, and the light

diffracts when mapping the object through the pinhole, forming a series of light–dark
alternating diffraction rings. Therefore, a point in the real world will be a circle with a
certain radius after imaging. Academia describes this phenomenon with a point spread
function, and Pentland uses a two-dimensional Gaussian distribution to model it [41],
which is defined as follows:

g(x, y) = Ae−a[(x−x0)
2+(y−y0)

2] (4)

where A represents the intensity of the target in the imaging, a represents the optical
parameters of the detector, and (x0, y0) represents the center position of the target.

When the point target passes through a pixel, the intensity of the pixel first increases
and then decreases, and a bell-shaped transient disturbance then appears on the TP of the
pixel. The bell-shaped TP can be described by the following formula:

s(k) = Ae−a[v(k−k0)]
2

, k1 < k < k2 (5)

where v is the moving speed of the target and k0 = k1 + ( k2 − k1)/2 represents the time
when the target center passes through the pixel.

The formation process and specific shape of target TP are shown in Figure 2.

Figure 2. The formation process and the specific shape of target TP; k is the frame number and s(k) is
the intensity value of the transient disturbance; A is the maximum intensity of the point target.

Because the size of the target is smaller than the imaging spatial resolution, the target
cannot completely cover the background, and the intensity of the target in imaging will be
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affected by the background. Therefore, the formula of TP can be expressed as background
distribution plus target distribution, as shown below:

TPi,j(k) = ni,j(k) + ti,j(k) + bi,j(k) (6)

where ni,j(k) is the distribution of AN.

3. Detection Method

3.1. The Framework of Temporal Transient Disturbance Learning

We used CNN-1D to detect transient disturbances formed by the target. Because the
transient disturbance is extremely weak, the feature extraction of the transient disturbance
is difficult and the extracted features are easily lost in the network. The skip connection can
directly transfer the shallow feature to deeper layers so that the network can fully learn the
distribution feature of the transient disturbance and achieve high-accuracy detection. The
detection framework of our method is shown in Figure 3, which includes two modules:
training and detection. In the training part, we first generated the simulated TP by adding
a bell-shaped signal to the background signal. Noise was then added to the TP to simulate
a real situation. Next, a training dataset containing 160,000 TPs was generated under
the experimental parameters. Subsequently, the proposed networks, 1D-ResNet-8 and
1D-ResNet-16, were trained under the same super-parameter settings. In the detection part,
the trained model was used to detect the transient disturbance in TPs formed by pixels to
detect the moving track of the point target.

Figure 3. The detection framework of our method.

3.2. Architectures of 1D-ResNet

There are two tasks for detecting transient disturbances in a TP. One involves clas-
sifying the target TP containing a bell-shaped signal and the background TP. The other
involves obtaining information on transient disturbances, such as the time of occurrence
and the duration of the bell-shaped signal. Therefore, for these two detection tasks, inspired
by classical ResNet and Darknet, we use one-dimensional ResNet as the backbone feature
extraction network and CBR-1D as the basic feature extraction unit [42,43] to propose
the 1D-ResNet. To verify the impact of the network layers on the detection performance,
1D-ResNet-8 and 1D-ResNet-16 were designed. The architectures of these 1D-ResNet are
shown in Figure 4.
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Figure 4. The architectures of 1D-ResNet.

Both networks are composed of input, backbone, neck, and output. A TP with a size
of 512 × 1 was the input for the network. Backbone was used to extract the features of the
TP. The neck connects the backbone and the output and to provide higher-dimensional
features for the output. Finally, three outputs are obtained. If a bell-shaped signal exists,
the outputs are the class of TP, the center position, and the size of the bell-shaped signal.
Otherwise, we obtain three zero outputs.

In the training network stage, the TP class is easy to identify, as it is the first output.
Meanwhile, identifying the center position and size is difficult. Therefore, two LBR blocks
are set behind the convolution layer as the neck to further extract the features. Each LBR
block includes a linear layer, batch normalization (BN), and ReLU.

Several skip connections were used to transmit the feature from the shallow layer to
the deeper layer in order to avoid the loss of the transient disturbance feature. The CBR-1D
includes a one-dimensional convolution layer (Conv1D), BN, and ReLU. Conv1D was
used to extract local features in the TP and then normalize the extracted features. Finally,
ReLU was used to activate the features. This can inhibit the change in the data distribution,
accelerate the convergence speed, and avoid the problems of gradient disappearance and
gradient explosion.

3.3. Training the 1D-ResNet

3.3.1. Generate the Dataset

Point targets with a SNR below 3 dB will have no obvious spatial features; therefore,
the SNR research range was established as −3 dB to 3 dB. Because the actual TP under a
specific SNR is difficult to obtain and label, the features of the target and ground TP were
combined to generate a dataset through simulation. To enable the network to fully learn
the features of TP within the research SNR range, TPs were generated between −4 dB
and 4 dB.

During TP simulation, a bell-shaped target signal is generated according to Formula (5)
and the location where the target signal appears is set randomly. To verify the effect of
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the target signal size on the detection performance, the target signal size range was set to
10~110 and signals of different sizes were generated in equal proportions. A constant was
randomly set as the background signal. The two signals were superimposed to obtain the
simulated TP. Finally, AWGN was added to the TP simulation. To ensure that the model
exhibits good performance on TPs with different SNRs and different target signal sizes, we
set the number of TPs to be equal for each SNR and size range.

After generating the dataset, we divided it into training and validation sets at a ratio
of 8:2, respectively. The composition of the TPs in the dataset is shown in Figure 5. The left
figure shows the distribution of TPs under different SNRs and the right figure shows the
distribution of TPs with different sizes under the same SNR.

Figure 5. The composition of TPs in the dataset.

3.3.2. Loss Function

As the network trained in this study is a multitask learning network, the loss function
is composed of three parts: classification loss, center position loss, and size loss. The
classification loss uses binary cross-entropy loss, and the center position loss and size
loss use the mean square error loss. Because there are significant differences in the order
of magnitude of these three parts of the loss function, it is necessary to manually set
their weights to prevent imbalance loss, and the final weighted loss function is shown
in Formula (7).

Loss = w1 ∗ LossC + w2 ∗ LossP + w3 ∗ Losss (7)

where LossC represents the classification loss, LossP represents the center position loss,
and Losss represents size loss. The formulas for these three parts are as follows:

&LossC = − 1
N

N

∑
i=1

[Ci log (Ĉi) + (1 − Ci) log (1 − Ĉi)] (8)

LossP = − 1
2N

N

∑
i=1

(
Pi − P̂i

)2
(9)

LossW = − 1
2N

N

∑
i=1

(
Wi − Ŵi

)2
(10)

where Ci represents the category label, Ĉi represents the predicted category, Pi represents
the center point position label, P̂i represents the predicted center position, Wi represents
the size label, and Ŵi represents the predicted size label. N represents the number of TPs in
a batch.
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3.3.3. Training the Networks

PyTorch was used to build the network architectures and the training environment.
The training equipment used was a workstation with an NVIDIA GeForce GTX 1080 ti
GPU and 32 GB of memory.

During training, the random seed was set to 3407, the Adam optimizer was used,
the parameter penalty coefficient was set to 1 × 10−5, the learning rate was initially set
to 1 × 10−4, and the batch size was set to 2000. During training, rough training was first
conducted for 10 epochs, then the learning rate was reduced 10-fold and fine-tuning was
performed. If the loss of the validation set did not decrease within 10 epochs, the training
ended. The loss optimization of network training is shown in Figure 6.

Figure 6. The loss optimization of network training. Epoch represents the number of iterations in the
two networks’ training.

Figure 6 shows that the two networks converged after five epochs of training, and the
training effect of 1D-ResNet-16 was slightly better than that of 1D-ResNet-8.

3.4. The Moving Point Target Trajectory Detection Process

The detection process of our proposed framework is as follows:

1. Input an image sequence and obtain its TP for each pixel.
2. Pre-process the TPs, standardize the TPs, and divide the TP segments according to

the network input size.
3. Load the trained model, input the TPs into 1D-ResNet in batches, and obtain

the outputs.
4. Determine whether the TPs exist in the transient disturbance caused by the target

according to the specified threshold value. If a TP exists, its pixel is considered to be
in the foreground; otherwise, it is considered to be in the background.

5. Unify all foreground pixels and output the motion track of the target.

4. Experiments and Analysis

To evaluate the feasibility and performance of the proposed method, extensive experi-
ments were conducted, including a TP simulation experiment, image-sequence simulation
experiment, real-world experiment, and comparison experiment.

• The TP simulation experiment directly detects the simulated TP and evaluates the
classification and positioning performance of the method under ideal conditions
using the accuracy of the receiver operating characteristic (ROC) and intersection
over union (IOU).

• To further fit the real scene and test the performance of the detection framework, we
established image-sequence simulation experiments. A simulated moving point target
was added to the real background image sequence. Simulation sequences were used
as the input data of the detection framework.
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• We shot the movement process of the point target outdoors and conducted a real-world
experiment based on these data.

• To verify the performance of the proposed method, we compared it with that of other
benchmark methods.

4.1. Details of Image Sequences in Experiments

In the experiments, we used seven image sequences, three of which were simulated.
The other four were real-world data taken outdoors. The details of the image sequences
used in the experiments are listed in Table 1.

Table 1. The details of image sequences.

Sequences Resolution Scenes Speed (Pixels/Frame) Frames SNR (dB)

Sequence 1 128 × 128 Asphalt Road 0.0125 10,240 1.22
Sequence 2 128 × 128 Pure Sky 0.0125 10,240 0.6
Sequence 3 128 × 128 Complex Scene 0.0625 2048 1.09
Sequence 4 100 × 100 Asphalt Road 0.0122 8192 1–5
Sequence 5 100 × 100 Asphalt Road 0.0244 4096 1–5
Sequence 6 100 × 100 Asphalt Road 0.0488 2048 1–5
Sequence 7 100 × 100 Asphalt Road 0.0977 1024 1–5

In the image-sequence simulation experiment, we used asphalt roads, pure sky, and a
complex scene to simulate space-based and ground-based detection. The backgrounds of
sequence 1 and sequence 2 are simple, while the background of sequence 3 is more complex
and has scenes such as sky, mountains, buildings, etc., in the background. In sequences 1–3,
we added a point moving target that was 1–3 pixels in size to these background image
sequences. This point target moves from the upper-left corner to the lower-right corner of
the image sequence.

To verify the performance of the proposed method in a real image sequence, we used
a high-speed camera to capture outdoor image sequences. We tracked the movement of
a glass ball from a height of approximately 50 m at 20,000 fps. The diameter of the glass
ball was 1.5 cm, and the SNR was approximately 1–5 dB. To facilitate the experimental
analysis, we obtained 8192 frames from the original sequence and established a window of
100 × 100 pixels for the target to pass through.

After obtaining the original sequence 4, to verify the impact of the target’s stay
time on the detection effect on a single pixel, we down-sampled sequence 4 to obtain
sequences 5–7.

4.2. TP Simulation Experiment

The experiments in this section were conducted in two ways to verify the detection
effect of our method on TPs with different SNRs and target signals of different sizes. ROC
and IOU accuracy rates were used to evaluate the classification and positioning capabilities
of the method, respectively.

The ROC curve is a graphical representation of the performance of a binary classifica-
tion model as the discrimination threshold is varied. The x-axis represents the false positive
rate (FPR), which is the ratio of false positives (incorrectly classified negative samples) to
the total number of negative samples. The y-axis represents the true positive rate (TPR),
which is the ratio of true positives (correctly classified positive samples) to the total number
of positive samples. In this paper, positive samples refer to TPs containing the target signal,
while negative samples refer to TPs without the target signal. Each point on the ROC curve
reflects the sensitivity of the classifier to different discrimination thresholds. The larger
the area under the curve (AUC) covered under the ROC curve, the better the detection
performance of the method.

The center position and size of the transient disturbance form the bounding box. If the
IOU is greater than 0.5, the positioning is considered correct. The calculation method of the
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IOU of the predicted and true bounding boxes is shown in Equation (11). The higher the
accuracy of the IOU, the better the positioning performance of the method.

IOU =
min(ET , EP)− max(ST , SP)

max(ET , EP)− min(ST , SP)
(11)

where ET and EP represent the right boundary of the true bounding box and predicted
bounding box, respectively, and ST and SP represent the left boundary of the true bounding
box and predicted bounding box, respectively.

4.2.1. The Detection Performance under Difference SNR

To verify the influence of SNR on detection performance, simulation TPs under dif-
ferent SNRs were generated. Under each SNR, the size of the target signal is set between
10 and 110 in equal proportion. The ROC curves drawn using the two networks under
different SNRs are shown in Figure 7, and the AUC and accuracy of the IOU are shown
in Table 2.

(a) (b)

Figure 7. The detailed ROC of two networks under different SNRs. (a) ROC of 1D-ResNet-8. (b) ROC
of 1D-ResNet-16.

Table 2. AUC and accuracy of IOU under different SNRs.

SNR
AUC Accuracy of IOU

1D-ResNet-8 1D-ResNet-16 1D-ResNet-8 1D-ResNet-16

−3 dB 0.9393 0.9389 0.5350 0.6460
−2 dB 0.9591 0.9593 0.6130 0.7000
−1 dB 0.9724 0.9719 0.6840 0.7320
0 dB 0.9807 0.9832 0.7350 0.7770
1 dB 0.9867 0.9859 0.7340 0.7670
2 dB 0.9941 0.9957 0.7730 0.7810
3 dB 0.9955 0.9963 0.7880 0.8020

As is shown in Figure 7 and Table 2, the classification performance of the two models
reached a good level, and all ROCs covered over 90% of the area. With a decrease in the
SNR, the classification performance worsens. The accuracy of the IOU also decreases with
a decrease in the SNR. This is because transient disturbances under low SNR are very weak
and can easily be submerged in the background. During the detection process, the target
signal is prone to clutter interference, resulting in classification and positioning errors.
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4.2.2. The Detection Performance under Different Target Signal Sizes

To verify the influence of target signal size on detection performance, in the experiment,
simulated TPs with different sizes were generated, in which the SNR was set at an equal
ratio of –3 dB to 3 dB under each size. The ROC drawn by the two networks under different
target signal sizes are shown in Figure 8, and the AUC and accuracy of IOU are shown
in Table 3.

(a) (b)

Figure 8. The ROC of two networks under different target signal sizes. (a) ROC of 1D-ResNet-8.
(b) ROC of 1D-ResNet-16.

Table 3. AUC and accuracy of IOU under different target signal sizes.

Size
AUC Accuracy of IOU

1D-ResNet-8 1D-ResNet-16 1D-ResNet-8 1D-ResNet-16

[10, 20] 0.8541 0.8574 0.0614 0.1214
[20, 30] 0.9614 0.9575 0.2486 0.3143
[30, 40] 0.9873 0.9882 0.4371 0.4914
[40, 50] 0.9937 0.9951 0.6586 0.6643
[50, 60] 0.9966 0.9979 0.7543 0.7671
[60, 70] 0.9986 0.9993 0.8314 0.8771
[70, 80] 0.9988 0.9991 0.9129 0.9343
[80, 90] 0.9980 0.9993 0.9529 0.9529

[90, 100] 0.9991 0.9997 0.9614 0.9771
[100, 110] 0.9997 0.9999 0.9914 0.9871

As is shown in Figure 8 and Table 3, with an increase in the target signal size, the
classification and positioning capabilities of the two models show a significant improvement
trend. For classification tasks, when the target signal size was less than 20, the classification
performance was very poor, whereas when the target signal size increased to 40, the AUC
of both models reached over 99%.

For positioning tasks, the IOU accuracy exhibited a more obvious trend with an
increase in the target signal size. When the size was increased to 70, the accuracy increased
to over 90%.

From the experimental results, we can see that the size of the target signal is a crucial
factor for our methods. The longer the moving target stays on a single pixel, the more
sufficient are the motion features and the better the performance of the proposed method.
Therefore, the detection performance can be improved by increasing the frame rate of
the detector.
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4.2.3. TP Simulation Experiment Analysis

The SNR and size of the target signal are important factors that affect detection
performance. The higher the SNR and the larger the proportion of the target signal, the
better the model detection performance. The proportion of the target signal has a greater
impact on the detection effect than the SNR. The SNR cannot be significantly improved;
however, the proportion of the target signal can be further improved by increasing the
frame rate of the detection equipment.

Among the two networks, although 1D-ResNet-16 has an additional eight layers of
CBR-1D and 228,160 parameters compared to 1D-ResNet-8, the improvement of the model’s
detection performance is very small, the classification performance gap is small, and the
IOU accuracy rate is less than two percentage points higher than that of 1D-ResNet-8. This
proves that for weak transients, deeper network layers do not lead to greater performance
improvement; however, deeper networks lead to greater computing consumption, which is
contradictory to real-time detection performance.

4.3. Image-Sequence Simulation Experiment

We used our method to detect sequences 1–3. The detection results for the two
networks are presented in Figure 9 and Table 4.

 

(a)             (b)            (c) 

Figure 9. The detection results of the two networks in simulated image sequences. (a) The ground
truth of the image sequences. (b) The detection results of 1D-ResNet-8. (c) The detection results of
1D-ResNet-16.

Table 4. The detection results of the simulated image sequences.

Sequences
Detection Rate False Alarm Rate Efficiency (ms/Frame)

1D-ResNet-8 1D-ResNet-16 1D-ResNet-8 1D-ResNet-16 1D-ResNet-8 1D-ResNet-16

Sequence 1 72.67% 88.28% 0.15% 0.17% 1.77 2.97
Sequence 2 69.53% 87.50% 0.16% 0.11% 1.83 2.96
Sequence 3 78.12% 79.69% 0.58% 0.51% 3.01 4.19

From Figure 9 and Table 4, we can observe that both networks show good detection
performance for all three sequences. Although there were some false alarm points, the
moving track (main diagonal) of the target was clear. Additionally, these false alarm points
can be removed through post-processing.
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Compared to 1D-ResNet-8, the detection rate of 1D-ResNet-16 is higher, but the time
consumption of 1D-ResNet-8 is lower. In an actual detection task, we should use 1D-
ResNet-16 if the detection rate is more important. However, if the detection speed is more
important, 1D-ResNet-8 should be used.

4.4. Real-World Experiment

We used our method to detect real-world sequences. The detection results are shown
in Figure 10 and Table 5.

(a)            (b)            (c)           (d) 

Figure 10. The detection results of the two networks on real-data sequences. (a) The detection results
of the two networks on sequence 4. (b) The detection results of the two networks on sequence 5.
(c) The detection results of the two networks on sequence 6. (d) The detection results of the two
networks on sequence 7.

Table 5. The detection results on real data sequences.

Sequences
Detection Rate False Alarm Rate Efficiency (ms/Frame)

1D-ResNet-8 1D-ResNet-16 1D-ResNet-8 1D-ResNet-16 1D-ResNet-8 1D-ResNet-16

Sequence 4 96.00% 97.00% 0.00% 0.00% 1.63 2.27
Sequence 5 96.00% 96.00% 0.00% 0.01% 1.79 2.58
Sequence 6 95.00% 95.00% 0.01% 0.02% 2.55 3.15
Sequence 7 90.00% 91.00% 0.00% 0.00% 3.62 4.49

The results show that both networks have relatively good detection performance on
the sequences, both of which completely detect the moving track of the glass ball. With
an increase in the de-sampling fold, the stay frames of the target in a single pixel become
shorter and the detection performance worsens. In this experiment, 1D-ResNet-16 had
no significant advantage over 1D-ResNet-8 in terms of detection performance. Therefore,
1D-ResNet-8 can meet the detection requirements when the SNR is high.

4.5. Contrast Experiments with the Benchmark Methods

To verify the performance of the proposed method, we compared it with some bench-
mark methods, including MaxMean [7], IPI [13], LCM [8], Kernel [38], ICLSP [35], NAF [36],
and TRLCM [44]. MaxMean, IPI, and LCM are spatial-based methods, whereas Kernel,
ICLSP, NAF, and TRLCM are temporal-based methods.

Sequences 1–4 were used for comparison. The results are presented in Figure 11 and
Tables 6 and 7.
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Figure 11. The detection results of the proposed methods and benchmark methods.

Table 6. The detection rates of the proposed methods and the benchmark methods.

Method
Detection Rate

Sequence 1 Sequence 2 Sequence 3 Sequence 4

1D-ResNet-16 88.28% 87.50% 79.69% 97.00%
1D-ResNet-8 72.67% 69.53% 78.13% 96.00%

ICLSP 88.28% 82.81% 78.13% 68.00%
NAF 1.56% 0.78% 73.43% 52.00%

TRLCM 35.16% 29.69% 71.88% 68.00%
Kernel 67.97% 60.16% 66.41% 95.00%

MaxMean 10.16% 1.56% 46.09% 8.00%
LCM 6.25% 0.78% 28.12% 9.00%
IPI 1.56% 23.43% 4.69% 3.00%

Table 7. The false alarm rates of the proposed methods and the benchmark methods.

Method
False Alarm Rate

Sequence 1 Sequence 2 Sequence 3 Sequence 4

1D-ResNet-16 0.15% 0.16% 0.51% 0.00%
1D-ResNet-8 0.17% 0.11% 0.58% 0.00%

ICLSP 0.14% 0.19% 0.54% 0.13%
NAF 0.29% 0.23% 0.61% 0.15%

TRLCM 0.20% 0.18% 2.22% 0.14%
Kernel 5.38% 4.71% 0.61% 0.02%

MaxMean 8.87% 13.81% 43.21% 4.80%
LCM 5.73% 1.29% 33.03% 2.13%
IPI 0.70% 26.00% 1.51% 1.54%

Figure 11 shows that the temporal-based methods can detect low-SNR point targets in
an image sequence, whereas the spatial-based methods cannot detect the target track.

Among the temporal-based methods, our method has the best performance, followed
by ICLSP. Although ICLSP exhibits similar performance to our method on simulation
sequences, its detection effect is far inferior to that of our method on real-world low-SNR
sequences. The Kernel method can better detect a real sequence with a high SNR, but there
are many false alarm points for the simulation sequence with a low SNR. This shows that
our method not only has excellent detection ability for moving point targets with a low
SNR but also has good robustness for real point targets.
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Table 8 shows the computational efficiency of all methods. These methods are imple-
mented on a computer with an AMD Ryzen 7 1700 CPU and a Nvidia GeForce GTX 1080
ti GPU. From Table 8, it can be seen that our method has the fastest detection speed. The
detection speed of 1D-ResNet-8 is faster than that of 1D-ResNet-16, as 1D-ResNet-8 has
fewer parameters. In the future, we will improve the network by proposing lightweight
networks to further improve the detection speed.

Table 8. The computing efficiency of all methods.

Method Environment
Computing Efficiency (ms/Frame)

Sequence 1 Sequence 2 Sequence 3 Sequence 4

1D-ResNet-16 python3.9+cuda11.7 2.97 2.96 4.19 2.27
1D-ResNet-8 python3.9+cuda11.7 1.77 1.83 3.01 1.63

ICLSP python3.9 30.84 32.35 29.82 18.58
NAF python3.9 1194.15 1203.66 1060.80 761.13

TRLCM python3.9 580.75 528.75 478.37 355.44
Kernel python3.9 1586.91 1287.25 3589.67 1481.46

MaxMean matlab2018 246.33 244.61 226.59 147.11
LCM matlab2018 429.53 428.21 418.99 258.24
IPI matlab2018 612.23 528.25 760.69 237.29

5. Discussion

In this section, we discuss our method in detail and compare it with other methods
to illustrate its advantages and disadvantages. After that, we discuss the results of our
ablation experiments to verify the effects of various parts of 1D-ResNet. Finally, we discuss
the results of our visualization research on the network to verify whether it learned the
features of transient disturbances.

5.1. Analysis of All Methods

In this section, we analyze the characteristics, advantages, and disadvantages of all
methods, as shown in Table 9.

Table 9. The characteristics, advantages, and disadvantages of all methods.

Method Characteristics Advantages Disadvantages

1D-ResNet-16 Batch detection of transient disturbances in
TP using 1D-ResNet-16 on GPU

Best detection ability and fast
detection speed for low-SNR
point targets; Few
hyperparameters

The detection speed is slower
than that of 1D-ResNet-8

1D-ResNet-8 Batch detection of transient disturbances in
TP using 1D-ResNet-8 on GPU

Good detection ability and
fastest detection speed for
low-SNR point targets; Few
hyperparameters

The detection performance is
slightly worse than that of
1D-ResNet-16

ICLSP
Calculate the deviation distribution
between TP and CLSP on the CPU to detect
the target TP

Good detection ability for
low-SNR point targets

Poor detection performance for
real data; Slow detection speed;
More hyperparameters

NAF Using a nonlinear filter to extract the target
TP on CPU

Moving point target with a
higher SNR can be detected

Very slow detection speed;
Unable to detect low-SNR
targets; More hyperparameters

TRLCM Using temporal local contrast information
to detect target TP on CPU

Can detect low-SNR
point targets

Very slow detection speed; Poor
detection performance for
low-SNR targets; More
hyperparameters
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Table 9. Cont.

Method Characteristics Advantages Disadvantages

Kernel
Calculate the statistical distribution
distance between the target and
background to detect target TP on CPU

Can detect low-SNR point
targets; Few hyperparameters

Very slow detection speed; Poor
detection performance for
low-SNR targets

MaxMean Detect each image based on local
maximum mean on CPU

Simple detection theory;
Few hyperparameters

Very slow detection speed;
Completely unable to detect
low-SNR targets

LCM Detect each image based on local contrast
on CPU

Simple detection theory;
Few hyperparameters

Very slow detection speed;
Completely unable to detect
low-SNR targets

IPI

Based on the non-local autocorrelation
characteristics of the background,
transform the small target detection into an
optimization problem of recovering
low-rank and sparse matrices and use
stable principal component pursuit to solve
this problem on CPU

Simple detection theory;
Few hyperparameters

Very slow detection speed;
Completely unable to detect
low-SNR targets

The two networks we propose have the best detection performance and fastest detec-
tion speed for low-SNR moving point targets. Of the two networks, 1D-ResNet-16 has the
best detection performance, while 1D-ResNet-8 has the fastest detection speed.

Other TP-based detection methods (ICLSP, NAF, TRLCM, and Kernel) can also detect
the motion trajectory of targets, but their detection rate and false alarm rate are not as good
as those of our methods, and these methods require more time for detection.

Other spatial-based methods (MaxMean, LCM, and IPI) are completely unable to
detect point targets under a low SNR.

5.2. Ablation Experiments

In this section, we conducted ablation experiments to verify the superiority of the
1D-ResNet and CBR-1D. Due to the similarity of the two network structures (1D-ResNet-16
only has eight more layers than 1D-ResNet-8), this section is based on 1D-ResNet-8 only.

5.2.1. Network Structure Study

We first removed the skip connections from the network and then replaced the basic
structural unit CBR with Conv-1D (Conv1D and ReLU) and CBL (Conv1D, BN, and
LeakyReLU). We then removed the LBR module from the network. The ablation experiment
we designed is shown in Table 10.

Table 10. The networks of ablation experiments.

Network Skip Connection Basic Structural Unit LBR

CNN-1D ✗ Conv-1D ✗

ResNet-1D ✓ Conv-1D ✗

ResNet-1D LBR ✓ Conv-1D ✓

ResNet-1D CBL+LBR ✓ CBL-1D ✓

Ours ✓ CBR-1D ✓

We did not weigh the loss function to see the performance of these networks. The loss
optimization of all networks is shown in Figure 12.
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Figure 12. The loss optimization of all networks in training.

From Figure 12, we can see that the performance of the CNN-1D network is the worst,
but after adding skip connections, the performance of ResNet-1D is significantly improved.
This indicates that skip connections are very helpful for optimizing network loss. After
adding the LBR module, the loss of ResNet-1D LBR further decreased. The addition of BN
to the basic structural unit accelerates the convergence speed of the network. However, we
can also see that replacing the activation function (ReLU or LeakyReLU) does not affect the
network optimization.

Next, we use these networks to test the TP and verify its detection performance. The
experimental data are TP with SNR = 0 dB and target signal size = 80. The experimental
results are shown in Figure 13 and Table 11.

Figure 13. The detailed ROC of different networks.
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Table 11. The AUC and accuracy of IOU of different networks.

Network AUC Accuracy of IOU

CNN-1D 0.9999 + 0.3956 × 10−4 64.58%
ResNet-1D 0.9999 + 0.7801 × 10−4 70.64%

ResNet-1D LBR 0.9999 + 0.8678 × 10−4 87.14%
ResNet-1D CBL+LBR 0.9999 + 0.9389 × 10−4 82.51%

Ours 0.9999 + 0.9522 × 10−4 86.97%

From the experimental results, it can be seen that all networks have good classification
ability, but our network has the highest AUC. The positioning ability of networks without
skip connections and LBR modules is poor. After adding skip connections, the network
positioning ability is improved but not by very much. The addition of the LBR module
greatly improves the positioning performance of the network. This indicates that skip
connections can transfer the transient disturbance features extracted from shallow layers to
deeper layers, preventing feature loss. Additionally, the LBR module can extract higher
dimensional features, which helps to better locate transient disturbances. ResNet-1D LBR
with no BN in its basic structural unit has the best positioning performance, but it is only
0.17% higher than that of our network. Adding BN will not affect the performance of the
network in theory, but it can accelerate the convergence speed of the network.

5.2.2. Network Visualization

In this section, we conduct visualization research on the network to verify whether it
has learned the distribution features of transient disturbances. Grad-CAM [45] (Gradient-
weighted Class Activation Mapping) was used to visualize the network in order to verify
whether the network has learned the features of the TP. The intensity of the target signal
was set to 3, the size was set to 60, and its SNR was controlled at 3 dB. The chosen
visualization layers were CBR5, CBR9, CBR13, and CBR16. The visualization results are
shown in Figure 14, where the blue line is the original TP and the orange line is the heatmap
calculated using Grad-CAM. The larger the value of the heatmap, the more interested the
network is.

Figure 14. The heatmap of 1D-ResNet-16.

Figure 14 shows that the heatmap has the highest value at the target signal, proving
that the network has fully learned the distribution features of the transient disturbance;
however, the heatmap of the shallow layers also contains a lot of clutter. With an increase
in the network depth, the clutter gradually decreases and the network learns more features
of the transient disturbance. Therefore, the Grad-CAM visualization of the network shows
that the network proposed in this study has interpretability.

6. Conclusions

To resolve the problem of moving point target detection at a low SNR, we converted
the problem of point target detection into the problem of transient disturbance detection in
the TP formed by each pixel. For the transient disturbance detection problem, we propose
a detection framework to learn the distribution features of the transient disturbances. In
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this framework, we first formulated different types of TP and generated a training dataset.
Then, two networks, 1D-ResNet-8 and 1D-ResNet-16, were designed, which can adapt to
the situation of detection speed priority and detection rate priority. Of the two networks,
1D-ResNet-16 has better detection performance than 1D-ResNet-8, but it requires more
time. For detection tasks with high real-time requirements, 1D-ResNet-8 is a better choice.
Adequate experiments showed that our TP model is correct and that our method is effective.
Compared to other benchmark methods, the proposed method has obvious advantages
when it comes to improving the detection rate and reducing the false alarm rate at a low
SNR. Our method also has the fastest detection speed. In addition, we conducted ablation
experiments to verify the superiority of our network and the CBR-1D structure, and the
experimental results showed that all the modules of our proposed network were necessary.
Network visualization research proved that our network learned the features of transient
disturbances well.

Moreover, we studied the factors that affect detection performance and found that the
size of the target signal had a greater impact on the detection results than the SNR of the
TP. The detection performance of our method can be improved by increasing the sampling
frame rate of the camera.

The method proposed in this study has the potential to be deployed in space-based or
ground-based intelligent detection equipment. In the future, we will continue to study the
problem of moving point target detection to propose a more efficient and stable detection
method in order to make further contributions to this research field.
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Abstract: Convolutional neural-network-based autoencoders, which can integrate the spatial correla-
tion between pixels well, have been broadly used for hyperspectral unmixing and obtained excellent
performance. Nevertheless, these methods are hindered in their performance by the fact that they
treat all spectral bands and spatial information equally in the unmixing procedure. In this article,
we propose an adaptive spectral–spatial attention autoencoder network, called SSANet, to solve
the mixing pixel problem of the hyperspectral image. First, we design an adaptive spectral–spatial
attention module, which refines spectral–spatial features by sequentially superimposing the spectral
attention module and spatial attention module. The spectral attention module is built to select useful
spectral bands, and the spatial attention module is designed to filter spatial information. Second,
SSANet exploits the geometric properties of endmembers in the hyperspectral image while con-
sidering abundance sparsity. We significantly improve the endmember and abundance results by
introducing minimum volume and sparsity regularization terms into the loss function. We evaluate
the proposed SSANet on one synthetic dataset and four real hyperspectral scenes, i.e., Samson, Jasper
Ridge, Houston, and Urban. The results indicate that the proposed SSANet achieved competitive
unmixing results compared with several conventional and advanced unmixing approaches with
respect to the root mean square error and spectral angle distance.

Keywords: hyperspectral unmixing; spectral–spatial attention mechanism; deep learning; autoencoder

1. Introduction

Hyperspectral image (HSI) analysis has attracted a large amount of attention in the
domain of remote sensing because of the rich content information contained in HSI [1,2].
Despite this, because of the inadequate spatial resolution of satellite sensors, atmospheric
mixed effects, and complex ground targets, a pixel in an HSI typically includes multiple
spectral features. Such pixels are known as “mixed pixels”. The presence of a large quantity
of mixed pixels causes serious issues for further research on HSI [3–5]. Hyperspectral
unmixing (HU) aims to separate the mixed pixels into a set of pure spectral signatures
(endmembers) and relative mixing coefficients (abundances) [6–8].

Recently, with its impressive learning ability and data fitting capability, deep learn-
ing (DL) has undergone rapid development in the HU domain [9,10]. The autoencoder
(AE), which is a typical representation of unsupervised DL, has been extensively applied
to HU tasks. The AE framework is mainly divided into two parts: the encoder, which
aims to automatically learn the low-dimensional embeddings (i.e., abundances) of input
pixels, and the decoder, which aims to reconstruct input pixels with the associated basis
(i.e., endmembers) [11,12]. Moreover, to achieve satisfying unmixing performance, numer-
ous refinements have been made to the existing AE-based unmixing framework. For exam-
ple, Qu and Qi [13] developed a sparse denoising AE unmixing network that introduces
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denoising constraints and sparsity constraints to the encoder and decoder, respectively.
Zhao et al. [14] presented an AE network that uses two constraints to optimize the spectral
unmixing task. Min et al. [12] designed a joint metric AE framework, which uses the Wasser-
stein distance and feature matching as constraints in the objective function. Jin et al. [15]
designed a two-stream AE architecture, which introduces a stream to solve the problem
of lacking effective guidance for the endmembers. A deep matrix factorization model
was developed in [16], which constructs a multilayer nonlinear structure and employs a
self-supervised constraint. Ozkan et al. [17] proposed a two-staged AE architecture that
combines spectral angle distance (SAD) with multiple regularizers as the final objective.
Su et al. adopted stacked AEs to handle outliers and noise, and employed a variational
AE to pose the proper constraint on abundances. An end-to-end unmixing framework
was proposed in [18,19], which combines the benefits of learning-based and model-based
approaches. However, these methods, which receive one mixed pixel at a time during train-
ing, only use the spectral information in an HSI, thereby ignoring the spatial correlation
between neighboring pixels.

Importantly, an HSI contains both rich spectral feature information and a degree
of spatial information [6]. Incorporating spatial correlation in the unmixing process has
been confirmed to significantly improve unmixing performance [20,21]. Therefore, many
researchers have introduced convolutional neural networks (CNN) into the traditional AE
structure to compensate for the absence of spatial features. For instance, Hong et al. [22]
proposed a self-supervised spatial–spectral unmixing method, which incorporates an ex-
tra sub-network to guide the endmember information to obtain good unmixing results.
Gao et al. [23] developed a cycle-consistency unmixing architecture and designed a self-
perception loss to refine the detailed information. Rasti et al. [24] proposed a minimum
simplex CNN unmixing approach that incorporates the spatial contextual structure and
exploits the geometric properties of endmembers. Ayed et al. [25] presented an approach
that uses extended morphological profiles, which combines the spatial correlation be-
tween pixels. In [26], a Bayesian fully convolutional framework was developed, which
considers the noise, endmembers, and spatial information. Most recently, a perceptual
loss-constrained adversarial AE was designed in [27], which takes into account factors
such as reconstruction errors and spatial information. Hadi et al. [28] presented a hybrid
3-D and 2-D architecture to leverage the spectral and spatial features. A dual branch AE
framework was constructed in [29] to incorporate spatial–contextual information.

Although the above CNN-based AE achieves satisfactory unmixing results, how to
adaptively adjust the weights of spectral and spatial features that influence the unmixing
performance is a new challenge. Humans can distribute their finite resources to the parts
that are most significant, informative, or salient. Inspired by visual attention mechanisms,
we propose a spectral–spatial attention AE network for HU and introduce a spectral–spatial
attention module (SSAM) to strengthen useful information and suppress information that
is unnecessary. Additionally, the absence of both abundance sparsity and endmember
geometric information are also responsible for limiting unmixing performance. Thus,
we combine a minimum volume constraint and sparsity constraint in the loss function.
Specifically, the primary contributions of our proposed SSANet are as follows:

1. We design an unsupervised unmixing network, which is based on a combination
of a learnable SSAM and convolutional AE. The SSAM plays two roles. First, the
spectral attention module (SEAM) adaptively learns the weights of spectral bands in
input data to enhance the representation of spectral information. Second, the spatial
attention module (SAAM) adaptively yields the attention weight assigned to each
adjacent pixel to derive useful spatial information.

2. We combine the prior knowledge that two regularizers (minimum volume regular-
ization and sparsity regularization) are applied to endmembers and abundances,
respectively. Additionally, to acquire high-quality endmember spectra, we design a
new minimum volume constraint.
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3. We apply the proposed unmixing network to one synthetic dataset and four real
hyperspectral scenes—i.e., Samson, Jasper Ridge, Houston, and Urban—and compare
it with several classical and advanced approaches. Furthermore, we investigate
the performance gain of SSANet with ablation experiments, involving the objective
functions and network modules.

The remainder of this paper is structured as follows: In Section 2, we describe the
theoretical knowledge of the AE-based unmixing approach simply. In Section 3, we explain
the SSANet method in detail. In Section 4, we evaluate SSANet using synthetic and real
datasets. In Section 5, we summarize the study.

2. AE-Based Unmixing Model

In the linear mixing model (LMM) [30], the observed spectral reflectance can be given by

Y = EA + N (1)

where Y = {yi|i = 1, 2, ..., P} ∈ RB×P denotes the observed HSI with B bands and P
pixels, and yi denotes the ith pixel. N ∈ RB×P denotes an additive noise matrix. E =
{ek|k = 1, 2, ..., R} ∈ RB×R denotes the endmember matrix with R endmember signatures
and needs to satisfy the nonnegative constraint. A = {ai|i = 1, 2, ..., P} ∈ RR×P is the
corresponding abundance matrix, where ai denotes the abundance percentage of the
ith pixel, and should be subjected to the abundance nonnegative constraint (ANC) and
abundance sum-to-one constraint (ASC)—that is,

⎧
⎨
⎩

ai ≥ 0
R

∑
k=1

aki = 1
(2)

The fundamental workflow of classic AE unmixing is shown in Figure 1 and is mainly
divided into two parts.

 

Figure 1. Workflow of the conventional AE unmixing network.

(1) An encoder En(·) transforms the input data {yi}
P
i=1 ∈ RB into a hidden represen-

tation hi, which can be described as

hi = En(yi) = f (W(e)Tyi + b(e)) (3)

where W(e) and b(e) denote the weight and bias of the eth encoder layer, respectively. f (·)
denotes the nonlinear activation function.

(2) A decoder De(·) reconstructs the data {ŷi}
P
i=1 ∈ RB using hi, which is formalized as

ŷi = De(hi) = W(d)Thi (4)
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where W(d) is a matrix that denotes the weights of the hidden and output layers.
Because of the characteristic of Equation (4), the output of the En(·) result is considered

as the predicted abundance vector, that is, âi ← hi , and the estimated endmember is repre-
sented by the weights of De(·), that is, Ê ← W(d) . In this framework, the reconstruction
loss of the training process is mathematically formulated as

LossAE =
1
P

P

∑
i=1

‖ŷi − yi‖
2 (5)

3. Spectral–Spatial Attention Unmixing Network

To leverage the spectral and spatial information in HSI, we first divide the HSI Y into
a set of 3-D neighboring patches M = {mi|i = 1, 2, ..., P} ∈ Rs×s×B, where s is the width of
patches. In SSANet, each patch mi in M is fed into the proposed network. In each patch mi,
the central pixel yi is the target pixel to be unmixed. The framework of SSANet is shown in
Figure 2. Its structure consists of three core components: the SSAM, encoder, and decoder.
The SSAM, which aims to provide meaningful spectral–spatial priors, helps to solidify
feature extraction at later stages. The encoder is designed to extract features and reduce
dimensionality. The role of the decoder is to reconstruct the learned features according to
the LMM. We provide details on the aforementioned components in Section 3.1, Section 3.2,
and Section 3.3, respectively.

 

Figure 2. Network architecture of the proposed SSANet.

3.1. Spectral–Spatial Attention Module

The SSAM contains two core modules—that is, the SEAM and SAAM—which are
arranged sequentially to perform the selection of spectral bands and spatial features in the
HSI, respectively. We describe the SEAM and SAAM in the following.

3.1.1. Spectral Attention Module

The SEAM [31] is introduced into the SSANet, aiming to adaptively learn the weights
of spectral bands in the HSI in an end-to-end manner. It generates a spectral weight vector
that reflects the significance of different spectral bands. The spectral bands modulated by
this vector can significantly improve unmixing performance. The framework of the SEAM
is shown in Figure 3.

Given the input mi ∈ Rs×s×B, first, global max pooling (GMP) and global average
pooling (GAP) are used to acquire spectral feature vectors αi ∈ R1×1×B and βi ∈ R1×1×B,
respectively. Next, the corresponding weight vectors γi ∈ R1×1×B and δi ∈ R1×1×B can be
derived using a multilayer perceptron (MLP) that can extract the weight information of each
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band. γi and δi are then summed, and the sigmoid function is applied to obtain the spectral
weight coefficients vi ∈ R1×1×B. The spectral attention formulation can be defined as

vi = σ(MLP(GMP(mi)) + MLP(GAP(mi))) (6)

where σ(·) denotes the sigmoid function. Finally, the output of SEAM m′
i is calculated by

the following equation:
m′

i = vi

⊗
mi (7)

 

Figure 3. Detailed workflow of the SEAM.

3.1.2. Spatial Attention Module

In this part, we design the SAAM to evaluate the adjacent dependence between pixels.
Similar to the SEAM, the SAAM also learns in an end-to-end manner and adaptively
selects spatial features from the pixels in the neighborhood. The module generates a spatial
weight matrix that expresses the importance of adjacent pixels. The recalibration of spatial
features using this matrix leads to an obvious improvement in the unmixing accuracy. The
framework of the SAAM is shown in Figure 4.

 

Figure 4. Detailed workflow of the SAAM.

Specifically, given the input m′
i ∈ Rs×s×B, in order to facilitate the calculation of the

similarity between neighboring pixels and the central pixel, the input m′
i is reshaped into

gi ∈ Rss×B(ss = s × s). The center pixel gcenter ∈ R1×1×B is extracted from the center of m’
i;

then, gcenter is reshaped into gtag ∈ R1×B. Next, both gi and gtag are fed into the scoring
function ρ(·) to compute the spatial similarity scores between them. The ρ(·) is produced
as follows:

ρ(hi) = ϕ

(
ss

∑
i=1

hiW

)
(8)

hi = exp(− 1
B

∥∥∥gi − gtag

∥∥∥
2

2
) (9)
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where hi is used to compute the correlation between gi and gtag. ρ(·) is implemented by a
full connection layer, parameterized by a weight matrix W ∈ Rss×ss. The spatial similarity
scores are derived by multiplying all the hi with W and the results are activated by a
rectified linear unit (ReLU) function ϕ(·). Subsequently, a sigmoid function is adopted
to compute the spatial weight matrix ωi ∈ Rs×s×1. Finally, we perform elementwise
multiplication of ωi with m′

i to implement the recalibration of spatial information:

m′′
i = ωi

⊗
m′

i (10)

where m′′
i represents the output of SAAM.

3.2. Encoder

As shown in Figure 2, the encoder consists of four convolutional layers, and the
number of convolution kernels diminishes with the depth of the layer, which can be
formulated as

En
(

m’’
i

)
= so f tmax(W 4

⊛ LR(BN(W3
⊛ LR(BN(W

2
⊛ LR(DO(BN(W1

⊛ m’’
i + b1))) + b2)) + b3)) + b4) (11)

where We and be denote the weights and biases, respectively, at the eth level of the encoder
for e = 1, 2, 3, 4. ⊛ denotes the convolution operation. BN(·) represents batch normaliza-
tion, which is used to enhance the performance and stability of the network, and speed up
the learning of the network. LR(·) denotes the leaky ReLU (LReLU) function, which aims
to promote nonlinearity. DO(·) represents the dropout function, which is currently the key
technique for preventing network overfitting. The purpose of the softmax function is to
satisfy two physical constraints on abundance: ANC and ASC.

3.3. Decoder

The decoder contains a 1 × 1 convolutional layer and uses LReLU as the activation
function. It is formulated as

De
(

En
(

m’’
i

))
= LR

(
W ⊛ En

(
m’’

i

)
+ b
)

(12)

where W and b denote the weights and biases of the decoder, respectively. It should be noted
that, in our experiments, to help the training of the decoder, we used the endmembers extracted
using the vertex component analysis (VCA) [32] approach to initialize the weights W.

3.4. Objective Functions

The overall loss function of SSANet consists of the following three terms.
Numerous AE-based works have adopted the SAD with the scale invariance as the

reconstruction loss [33,34]. Therefore, we apply the SAD measurement as the reconstruction
loss of SSANet, which is denoted as follows:

LossAE =
1
P

P

∑
i=1

arccos(
ŷT

i yi

‖ŷi‖2‖yi‖2
) (13)

The softmax function does not yield sparse abundance maps. Qian et al. [35] demonstrated
that using the l1/2 norm yields more accurate and sparser abundance results than using the l1
norm. We apply the l1/2 norm to the abundance vector âik, which is formulated as

LossSp =
P

∑
i=1

R

∑
k=1

√
|âik| (14)

where âik represents the reference abundance fractional proportion of the kth endmember
at the ith pixel in the HSI.

252



Remote Sens. 2023, 15, 2070

The minimum volume regularizer has already been proven to be beneficial for extract-
ing endmembers [36]. Moreover, to make the estimated endmembers close to the observed
spectrum, we design a more reasonable minimum volume constraint, denoted by

LossMv =
1

BR

R

∑
k=1

∥∥∥êk −
−
e
∥∥∥

2

2
(15)

where
−
e = (1/R)∑R

k=1 ek denotes the centroid vector. A geometrical explanation of this
concept is shown in Figure 5. During each iteration, by minimizing LossMv, the endmem-
bers are pulled from the initial values (i.e., the vertices of the initial data simplex) to the
vertices of the real data simplex.

 

Figure 5. Geometric interpretation of minimum volume regularization. Each vertex of the simplex is
considered as an endmember, and the initial endmembers are oriented toward the centroid of the
simplex determined by the real endmembers.

To summarize, the overall loss function of SSANet is expressed as

Loss = LossAE + λ1LossSp + λ2LossMv (16)

where λ1 and λ2 represent the regularization parameters.

4. Experiments

To validate the accuracy and validity of SSANet for HU, we conducted experiments
using one synthetic data [26] and four widely used real hyperspectral scenes (Samson [37],
Jasper Ridge [38], Houston [39], and Urban [40]), as shown in Figure 6. We chose seven
representative unmixing methods (including classical methods and the most advanced
methods) for comparison: VCA-FCLS [32,41], SGCNMF [42], DAEU [43], MTAEU [44],
CNNAEU [45], CyCU-Net [23], and MiSiCNet [24]. VCA-FCLS is a baseline method,
SGCNMF is based on non-negative matrix factorization, and the others are AE-based
methods. DAEU uses only spectral information, whereas MTAEU, CNNAEU, CyCU-Net,
and MiSiCNet use spectral–spatial information.

 

Figure 6. RGB images of the synthetic and real HSIs adopted in the experiments. (a) Synthetic data.
(b) Samson. (c) Jasper Ridge. (d) Houston. (e) Urban.
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4.1. Dataset Description

4.1.1. Synthetic Data

We created simulated data according to the approach adopted by Fang et al. [39]. Its
size was 104 × 104 pixels, distributed over 200 spectral bands, with four endmembers. Each
pixel in this image was a mixture that consisted of four endmembers. We generated these
mixed pixels by multiplying four endmembers and four abundance maps according to the
LMM. First, we created abundance maps that we decomposed into 8 × 8 homogeneous
blocks, which we randomly chose as one of the endmember categories. Then, we degraded
blocks by adopting a spatial low-pass filter of 9 × 9. Next, we added zero-mean Gaussian
noise with various signal-to-noise ratios (SNRs) to the obtained synthetic dataset. Because
of the different noise variances in different bands, we assigned different SNR values to
different bands and obtained band-related SNR values from the baseline Indian Pines image.
We assumed that the obtained SNR vector s was centralized and normalized; then, we
could acquire the synthetic SNR n based on the rule n = βs + r, where β is the fluctuation
amplitude of band-related SNR values and r is the center value that defines the total SNR
of all bands. To investigate the robustness of our approach to various noise levels, we
simulated three datasets with various noise values (SNR = 20, 30, 40 dB) by fixing β = 5
and varying r.

4.1.2. Samson Data

Samson data have three constituent materials: soil, trees, and water. This dataset was
captured by the Samson sensor. The image contains 156 spectral channels ranging from
0.4–0.9 μm. Because the original image is large, we selected a subimage of the original data
with a size of 95 × 95 pixels.

4.1.3. Jasper Ridge Data

Jasper Ridge data have four main materials: trees, water, soil, and roads. This dataset
was obtained by the AVIRIS sensor. The original HSI covers 512 × 614 pixels in size and
is spread over 224 spectral channels, covering wavelengths from 0.38 to 2.5 μm. It has
a spatial resolution of 20 m/pixel. We selected an area of interest of 100 × 100 pixels
and removed bands (1–3, 108–112, 154–166, and 220–224) to alleviate the influences of the
atmosphere and water vapor. Finally, the Jasper Ridge dataset had 198 remaining bands.

4.1.4. Houston Data

Houston data have four dominant materials: parking lot 1, running track, healthy
grass, and parking lot 2. The data were originally used in the 2013 IEEE GRSS data fusion
competition. The original HSI contains 349 × 1905 pixels, distributed over 144 channels
ranging from 0.35 to 1.05 μm. Its spatial resolution is 2.5 m/pixel. We selected a subimage
containing 170 × 170 pixels. The subimage is centered on Robertson Stadium on the
Houston campus.

4.1.5. Urban Data

Urban data have four constituent materials: asphalt, grass, tree, and roof. This dataset,
collected by the HYDICE sensor, is characterized by a complex distribution. Its pixel
resolution is 307 × 307, and there are 210 spectral bands ranging from 0.4 to 2.5 μm. It
has a spatial resolution of 2 m/pixel. After we removed the contaminated bands, 162
bands remained.

4.2. Experimental Settings

4.2.1. Evaluation Metrics

We selected two commonly used evaluation metrics, the root mean square error
(RMSE) and SAD, to assess the proposed method. These two indices are defined as
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RMSE(âi, ai) =

√√√√ 1
P

P

∑
i=1

‖âi − ai‖2
2 (17)

SAD(êk, ek) = arccos(
êT

k ek

‖êk‖2‖ek‖2
) (18)

where ek and êk are the real endmember and extracted endmember, respectively, and ai and
âi are the real abundance and predicted abundance, respectively.

For both evaluation metrics, the lower the value, the better the corresponding unmix-
ing results.

4.2.2. Hyperparameter Settings

In our experiments, we assumed that the number of endmembers R was known in
advance, as determined by HySime [46]. In the training phase, we initialized the decoder
with the endmembers extracted by VCA. We implemented our proposed SSANet in the
environment of PyTorch 1.6 with an i7-8550U CPU. We applied the Adam optimizer to
optimize the parameters. The selection of specific parameters for the proposed SSANet
is displayed in Table 1. Figure 7 shows the convergence curves of the proposed SSANet
during the learning process.

Table 1. Hyperparameter settings for the proposed SSANet.

Parameter λ1 λ2 Epoch Batch Size
Encoder

Learning Rate
Decoder

Learning Rate

Synthetic data 1 × 10−2 1 × 10−2 50 32 1 × 10−5 1 × 10−5

Samson 5 × 10−2 0.5 50 128 1 × 10−3 1 × 10−3

Jasper Ridge 5 × 10−2 0.5 50 128 1 × 10−3 1 × 10−3

Houston 5 × 10−2 0.5 50 256 1 × 10−4 1 × 10−5

Urban 5 × 10−2 0.5 50 64 1 × 10−3 1 × 10−3

 

Figure 7. Convergence curves during 50 epochs.

4.3. Comparison of SSANet with Other Methods

4.3.1. Experiments with Synthetic Data

To study the robustness of SSANet to noise, we added zero-mean Gaussian noise
with SNRs of 20, 30, and 40 dB to the synthetic dataset. Figure 8 shows the quantitative
analysis results with varying SNR levels. Generally, SSANet achieved better (i.e., lower)
SAD and RMSE results than the other methods, at both a low and high SNR. SGSNMF
performed well when the noise intensity was relatively low. At high noise levels, the
performance of SGSNMF deteriorated severely. CNNAEU and CyCU-Net could not obtain
the desired performance at various noise levels. The reason is that, despite the introduction
of spatial information, CNNAEU and CyCU-Net led to a noise-sensitivity problem because
of insufficient spectral feature representation capability. For MiSiCNet, the image prior
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aimed to solve the degradation problem. As a result, MiSiCNet achieved relatively good
results under low noise conditions. Other methods, such as DAEU and MTAEU, often
obtained satisfactory results because of the introduction of abundance sparsity and spectral–
spatial priors, respectively. The performance of SSANet did not degrade severely as noise
levels increased. The overall performance at various noise levels verified the robustness
of SSANet to noise, which mainly resulted from the advantage of the combination of the
attention mechanism and associated physical properties. The visualization results of the
abundances and endmembers for the synthetic data (SNR 40 dB) are shown in Figures 9
and 10, respectively. The experimental results indicated that our method successfully
obtained relatively good results.

 

Figure 8. Experimental results of SSANet with various noise values (20, 30, and 40 dB) for the
synthetic dataset. (a) Mean RMSE. (b) Mean SAD.

 

Figure 9. Visualization results of the abundances of the synthetic data (SNR 40 dB). (a) VCA-FCLS.
(b) SGCNMF. (c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet. (i)
Ground truth (GT).
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Figure 10. Visualization results of the endmembers of the synthetic data (SNR 40 dB). (a) VCA-FCLS.
(b) SGCNMF. (c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet.

4.3.2. Experiments with Samson Data

The quantitative results for Samson are shown in Tables 2 and 3. Notably, our proposed
SSANet outperformed the other methods in terms of the mean SAD and mean RMSE.
Additionally, compared with the suboptimal results, these two metrics lowered by 16%
and 69%, respectively. Figures 11 and 12 show the abundances and endmembers estimated
by all the methods. Figure 11 shows that VCA-FCLS and SGCNMF performed relatively
poorly, confusing soil and trees. By contrast, the DL-based methods confused nothing
and distinguished each material more accurately, which demonstrates the advantage of
the DL methods. However, the abundance results of these methods at the junction of two
different materials were not ideal, whereas our method retained rich edge information
and appeared much clearer visually. This may be the result of a moderate application of
sparsity regularization, in addition to spatial attention. As shown by Figure 12, all methods
achieved good performance. However, because SSANet took into account the geometric
information of endmembers, in addition to the utilization of spectral attention to enhance
the effective spectral bands, it made the extracted water endmember greatly superior to that
of the competing methods. The superior performance further validated the effectiveness
and reliability of SSANet.

Table 2. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Samson data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE
Soil 26.50 17.86 11.02 13.36 19.9 18.27 18.18 4.06
Tree 25.11 24.49 9.89 9.49 25.01 19.19 17.91 3.41

Water 42.35 35.77 10.71 7.08 27.91 15.78 31.31 1.90

Mean RMSE 31.32 26.04 10.54 9.98 24.27 17.75 22.47 3.12
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Table 3. SAD (×100) and mean SAD (×100) of endmembers acquired by various unmixing ap-
proaches on Samson data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD
Soil 2.36 0.98 1.53 3.20 6.13 1.06 1.03 0.92
Tree 4.33 4.60 4.52 6.21 4.01 2.50 3.54 3.55

Water 15.04 22.97 3.39 4.98 16.09 5.37 40.08 2.96

Mean SAD 7.24 9.51 3.15 4.80 8.74 2.97 14.88 2.48

 

Figure 11. Visualization results of the abundances of Samson data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet. (i) GT.

 

Figure 12. Visualization results of the endmembers of Samson data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) MTAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet.

4.3.3. Experiments with Jasper Ridge Data

Tables 4 and 5 show the quantitative results for Jasper Ridge. The visualization results
of abundances and endmembers are presented in Figures 13 and 14, respectively. As shown
in Table 4, for RMSE of each material, our SSANet lowered by 56%, 51%, 45%, and 57%,
respectively, compared with the suboptimal results. Table 5 shows that although SSANet
did not achieve the best results for each material, it ranked first with respect to the mean

258



Remote Sens. 2023, 15, 2070

SAD. Figure 14 also shows that the endmembers obtained by SSANet were close to the
GT. In Figure 13, the abundance maps generated by SSANet look much sharper. In the
Jasper dataset, roads occupy a small portion of the scene. For material roads, estimating
the abundances and endmembers is more challenging than for other materials because of
the complex distribution. Numerous methods estimate unsatisfactory abundances and fail
to completely separate roads, whereas SSANet separated roads more accurately because
of the application of the abundance sparsity and the geometric feature of endmembers.
Additionally, in both a heavily mixed area (soil) and homogeneous area (water), SSANet
obtained superior separation results because of its powerful learning capability that fully
integrated useful spectral and spatial information.

Table 4. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Jasper Ridge data. Annotation: bold red text indicates the best results and bold blue
text indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE

Road 14.48 11.99 19.03 20.83 44.82 11.75 24.94 5.11
Soil 12.69 14.82 15.90 26.99 37.48 14.09 22.13 6.18
Tree 15.63 15.80 16.32 21.75 23.64 9.66 9.60 5.27

Water 18.73 26.27 8.05 5.19 30.65 10.04 11.42 2.25

Mean RMSE 15.39 17.22 14.95 18.69 34.15 11.38 17.02 4.70

Table 5. SAD (×100) and mean SAD (×100) of endmembers acquired by various unmixing ap-
proaches on Jasper Ridge data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD

Road 9.01 14.39 29.57 11.64 15.07 3.85 32.97 2.10
Soil 22.34 22.45 6.03 15.80 9.52 3.70 6.63 7.52
Tree 14.81 20.76 3.20 4.61 9.17 3.23 4.32 6.56

Water 54.59 27.79 3.40 7.06 3.51 15.40 29.04 4.06

Mean SAD 25.19 21.35 10.55 9.78 9.32 6.44 18.24 5.06

 

Figure 13. Visualization results of the abundances of Jasper Ridge data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet. (i) GT.
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Figure 14. Visualization results of the endmembers of Jasper Ridge data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet.

4.3.4. Experiments with Houston Data

The qualitative analysis results for the Houston dataset are shown in Tables 6 and 7.
Figures 15 and 16 show the qualitative analysis results of the abundance maps and endmem-
bers acquired, respectively. Clearly, with respect to both the RMSE and SAD, the results
obtained by methods based on spectral–spatial information (MTAEU, MiSiCNet, and SSANet)
were better than those obtained by methods that used only spectral information (DAEU and
CyCU-Net). These results provide further confirmation that the full utilization of spectral–
spatial features is advantageous for enhancing the precision of HU. Although SSANet did
not acquire the best SAD results for each endmember, its mean SAD was the optimal result.
Moreover, SSANet achieved the best results for all abundances with respect to the RMSE. Im-
portantly, Figure 15 shows that all other methods performed poorly in terms of distinguishing
similar materials (i.e., parking lot1 and parking lot2); however, it was relatively easier for
our method to distinguish spectrally similar materials, which was facilitated by the attention
mechanism selecting useful spectral–spatial features and suppressing useless features. In
conclusion, we demonstrated the good performance of SSANet in real scenes with similar
substances based on the combined RMSE and SAD evaluation.

Table 6. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Houston data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE

Running Track 7.74 9.47 15.19 21.45 14.33 40.12 10.36 5.96
Grass Healthy 12.66 7.02 15.52 6.84 16.23 13.18 5.99 9.24
Parking Lot1 24.76 23.86 30.66 22.05 43.68 25.07 14.21 12.49
Parking Lot2 25.68 25.60 15.81 22.04 43.46 47.64 16.77 14.62

Mean RMSE 17.71 16.49 19.29 18.09 29.42 31.50 11.83 10.58

260



Remote Sens. 2023, 15, 2070

Table 7. SAD (×100) and mean SAD (×100) of endmembers acquired by various unmixing ap-
proaches on Houston data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD

Running Track 16.34 36.79 20.56 23.39 42.56 33.73 7.24 15.23
Grass Healthy 11.85 12.54 7.00 4.19 0.97 7.30 9.05 8.48
Parking Lot1 2.59 4.06 2.73 4.17 7.46 2.55 1.10 3.00
Parking Lot2 26.64 12.49 5.90 6.82 3.14 10.50 19.40 9.39

Mean SAD 14.35 16.47 9.05 9.64 13.53 13.52 9.20 9.02

 

Figure 15. Visualization results of the abundances of Houston data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet. (i) GT.

4.3.5. Experiments with Urban Data

Tables 8 and 9 show the quantitative metric comparisons for the Urban dataset.
Figures 17 and 18 visualize the results of the abundances and endmembers, respectively. A
feature of this dataset is its complex distribution, and mixed pixels are broadly distributed
in this scene. It is worth noting that SSANet had the finest mean and individual RMSE,
and the mean RMSE was 11% lower than that of the suboptimal method. Additionally,
the individual SAD obtained by SSANet was also competitive. Figure 17 shows that the
endmember mixed phenomenon appeared for VCA-FCLS and SGCNMF, which resulted
in poor results. CyCU-Net and MiSiCNet achieved poor qualitative and quantitative
performance. Although DAEU, MTAEU, and CNNAEU were able to distinguish each
material, there were some errors in the details, which were related to the absence of useful
adjacency information and a sparsity prior. Therefore, SSANet adopted a spatial attention
that assigned weights to neighboring pixels, in addition to the sparsity regularizer to make
the abundance maps look smooth and realistic. Figure 18 shows that the proposed SSANet
acquired similar visual endmember maps to GT. However, because the roof endmember
accounted for a small percentage of this large-scale scene, there were some gaps in the roof
endmember obtained by SSANet; however, the overall results remained competitive. The
superior unmixing results confirmed the reliability of SSANet in highly mixed scenes.
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Figure 16. Visualization results of the endmembers of Houston data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet.

Table 8. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Urban data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE

Asphalt 27.54 39.26 16.59 15.35 23.56 33.41 37.70 13.73
Grass 40.10 33.83 15.21 15.06 29.81 44.90 31.64 13.51
Tree 45.85 25.48 11.19 9.39 20.08 39.59 24.53 7.58
Roof 17.08 18.93 8.68 8.55 13.70 15.15 15.64 8.23

Mean RMSE 32.64 29.37 12.92 12.09 21.79 33.27 27.38 10.76

Table 9. SAD (×100) and mean SAD (×100) of endmembers acquired by different unmixing ap-
proaches on Urban data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD

Asphalt 20.95 102.34 11.48 8.13 6.02 20.66 76.25 7.51
Grass 26.03 44.42 6.85 5.06 10.05 34.99 39.12 3.69
Tree 34.59 9.28 3.39 6.95 13.99 20.88 9.88 3.80
Roof 82.28 16.45 30.91 14.83 6.29 9.86 4.52 26.31

Mean SAD 40.96 43.12 13.16 8.74 9.09 21.60 32.45 10.33
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Figure 17. Visualization results of the abundances of Urban data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet. (i) GT.

 

Figure 18. Visualization results of the endmembers of Urban data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet.

4.4. Discussion

Through the qualitative and quantitative analysis of four real hyperspectral scenes,
our SSANet vastly improved the unmixing performance. Because the distribution of real
scenes may not have fulfilled the prior distribution assumption, VCA-FCLS and SGCNMF
performed relatively poorly on real datasets compared with the DL-based methods, which
also indicates the advantage of using the DL methods for the unmixing task. DAEU is an
AE framework that does not contain spatial information; therefore, the overall performance
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of DAEU was not favorable; however, DAEU obtained satisfactory results in the abundance
estimation because its special design took advantage of abundance sparsity in the form
of adaptive thresholds. Additionally, the lack of ASC led to the poor performance of
CyCU-Net in the reconstruction process. MTAEU and CNNAEU used spatial correlation,
but their objective functions simply used the SAD reconstruction term and did not impose
regularizers on endmembers and abundances, which led to greater variances in endmem-
ber extraction and abundance estimation. MiSiCNet considered spatial information and
used the geometric information of endmembers. The utilization of geometric properties
allowed MiSiCNet to achieve competitive performance in endmember estimation, but it
did not leverage the relevant properties of abundance, thus limiting unmixing performance.
Although MTAEU, CNNAEU, and MiSiCNet combined spectral–spatial priors to make
the unmixing performance relatively good, their limited performance can be attributed to
their inability to combine useful spectral–spatial priors and the failure to consider both the
geometric property of the endmember and the abundance sparsity. For the aforementioned
problem, in our approach, we used SSAM to enhance useful information and weaken
useless information, in addition to imposing a minimum volume regularizer and sparse
regularizer on the endmembers and abundances, respectively. Therefore, our unmixing
method obtained good unmixing accuracy. In conclusion, the overall experimental perfor-
mance on four real-world HSIs illustrated the effectiveness and superior performance of
our method.

4.5. Ablation Experiments

4.5.1. Ablation Study on Objective Functions

We selected the Jasper Ridge scene as an example to evaluate the contribution of
the various parts of the objective function. Table 10 shows the results of the quantitative
analysis of the ablation study. We observed that using the SAD reconstruction loss solely
ensured the fulfillment of the HU task, but with limited accuracy. Incorporating appropriate
regularization greatly improved the unmixing performance. Using the sparsity term
exploited an inherent property of real scenes and guaranteed the sparsity of the abundance
results. Moreover, we introduced the minimum simplex volume constraint to exploit the
geometric information of the HSI. This term was beneficial for endmember extraction. To
summarize, all these regularizations appear to be associated with achieving the best results,
and the optimal performance was obtained by combining all of them.

Table 10. Mean RMSE (×100) and mean SAD (×100) results of ablation experiments with various
losses. Annotation: bold black text indicates the best results.

LossAE LossAE + LossSp LossAE + LossMv LossAE + LossSp + LossMv

Mean RMSE 14.53 6.27 9.54 4.70

Mean SAD 23.58 6.75 14.96 5.06

4.5.2. Ablation Study on Network Modules

In order to test whether both SSAM and SEAM improve the results, ablation exper-
iments in the Jasper Ridge scene are shown in this section. We compared SSANet with
SSANet without SSAM (SSANet-None), SSANet only with SEAM (SSANet-SEAM), and
SSANet only with SAAM (SSANet-SAAM). The results are shown in Table 11. It can be
seen from Table 11 that the SSANet after removing SEAM and SAAM yielded the worst
unmixing performance. By introducing either SEAM or SAAM into the proposed AE
model, the integrated SSANet had a certain improvement in the estimation of endmembers
and abundances. Consequently, it was necessary to combine SEAM and SAAM to achieve
superior performance.
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Table 11. Mean RMSE (×100) and mean SAD (×100) results of ablation experiments with various
network modules. Annotation: bold black text indicates the best results.

None SEAM SAAM SEAM + SAAM

Mean RMSE 6.87 6.48 5.46 4.70

Mean SAD 5.91 5.37 5.24 5.06

4.6. Processing Time

Table 12 shows the consumption time of all the unmixing approaches applied to the
Jasper Ridge dataset in seconds. We ran all the experiments on a computer with a 3.6 GHz
Intel Core i7-7820X CPU and NVIDIA GeForce RTX 1080 16GB GPU. We implemented VCA-
FCLS and SGCNMF in MATLAB R2016a; implemented DAEU, MTAEU, and CNNAEU
on the TensorFlow platform; and implemented CyCU-Net, MiSiCNet, and SSANet on the
PyTorch platform. The proposed SSANet is not the quickest, but its time consumption was
relatively satisfactory.

Table 12. Consumption time (in seconds) for all the unmixing approaches.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

Time(s) 1.75 26.82 15.35 23.26 1152.97 23.74 92.39 71.53

5. Conclusions

In this article, we present a convolutional AE unmixing network called SSANet, which
effectively uses spectral–spatial information in HSIs. First, we propose a learnable SSAM,
which refines spectral–spatial features by sequentially overlaying the SEAM and SAAM.
This module strengthens high-information features and weakens low-information features
by weighting the learning of features. Second, we use the sparsity of abundances and the
geometric properties of endmembers by adding a sparsity constraint term and a minimum
volume constraint term to the loss function to achieve sparse abundance results and accurate
endmembers. We verify the effectiveness and robustness of SSANet in experiments by
comparing it with several classical and advanced HU approaches in synthetic and real scenes.
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Abstract: Radar echo extrapolation is a commonly used approach for convective nowcasting. The
evolution of convective systems over a very short term can be foreseen according to the extrapolated
reflectivity images. Recently, deep neural networks have been widely applied to radar echo extrapo-
lation and have achieved better forecasting performance than traditional approaches. However, it is
difficult for existing methods to combine predictive flexibility with the ability to capture temporal
dependencies at the same time. To leverage the advantages of the previous networks while avoiding
the mentioned limitations, a 3D-UNet-LSTM model, which has an extractor-forecaster architecture,
is proposed in this paper. The extractor adopts 3D-UNet to extract comprehensive spatiotemporal
features from the input radar images. In the forecaster, a newly designed Seq2Seq network exploits
the extracted features and uses different convolutional long short-term memory (ConvLSTM) layers
to iteratively generate hidden states for different future timestamps. Finally, the hidden states are
transformed into predicted radar images through a convolutional layer. We conduct 0–1 h convective
nowcasting experiments on the public MeteoNet dataset. Quantitative evaluations demonstrate the
effectiveness of the 3D-UNet extractor, the newly designed forecaster, and their combination. In
addition, case studies qualitatively demonstrate that the proposed model has a better spatiotemporal
modeling ability for the complex nonlinear processes of convective echoes.

Keywords: radar echo extrapolation; sequence-to-sequence (Seq2Seq) network; 3D-Unet;
convective nowcasting

1. Introduction

Convective nowcasting usually refers to forecasting the evolution trends of convective
systems for lead times of up to a few hours, which is significant for protecting lives and
property and supporting outdoor activities [1–3]. However, it is still challenging due to the
obvious suddenness, rapid changes, and inherent uncertainty of convection systems.

In most cases, extrapolation-based forecasts have higher skills for lead times of up
to 1–2 h. Spatiotemporal extrapolation techniques use statistical models or data-driven
models to extrapolate radar or satellite images into the imminent future. After obtaining
extrapolation results, convective nowcasting can be conducted with radar echo reflectivity
values ≥ 35 dBZ [4] or cloud-top brightness temperatures below a certain threshold [5], and
convective precipitation fields can also be estimated with the Z-R relation [6] and nonlinear
mapping algorithms [7,8].

Traditional extrapolation techniques are usually based on statistical models, and most
of them follow the framework of Lagrangian persistence, which utilizes the motion field cal-
culated from recent images to extrapolate the latest available image under the assumption
that the intensity and motion are constant [9]. These methods can be roughly divided into
object-based extrapolation [10–12] and region-based extrapolation approaches [9,13–15].
Object-based extrapolation first identifies a convective storm cell and then extrapolates
its trajectory based on the calculated motion vectors; this technique is mainly suitable for
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nowcasting convective storms with high intensity and stability. Region-based extrapola-
tion focuses on the image and extrapolates all grid values without specific classifications.
However, the performance of traditional extrapolation techniques is poor when they are
used to forecast rapidly changing weather systems, especially for severe convection storms
with abrupt intensity, location and size changes [2,16].

Recently, the continuous development of deep learning has contributed significantly
to the modeling capabilities of extrapolation techniques. Deep neural networks (DNNs)
are capable of modeling nonlinear processes in observation images, thus depicting com-
plicated and rapidly developing weather phenomena such as the initiation, dissipation,
and rotation of clouds. On the other hand, a data-driven solution enables DNNs to learn
local weather patterns from massive historical observations, making them more suitable
for regional convective forecasts. Furthermore, many studies have demonstrated that
deep learning-based extrapolation methods perform better than traditional statistical ex-
trapolation techniques [17–20]. Among those methods, the commonly used DNNs are
convolutional recurrent neural networks (ConvRNNs) and convolutional neural networks
(CNNs) [17,18].

ConvRNNs can explicitly model the temporal dependencies of consecutive obser-
vation images by recursively applying stacked ConvRNN units along the time direction,
transmitting and updating the inside states. In prior works, most deep learning practi-
tioners used ConvRNNs to address extrapolation-based nowcasting for convective storms
and precipitation. For example, Shi et al. [17] proposed convolutional long short-term
memory (ConvLSTM) to extrapolate radar images; this approach uses convolution opera-
tions instead of full connections in its state transitions. Shi et al. [21] then designed a more
reasonable encoding-forecasting structure and proposed the trajectory-gated recurrent unit
(TrajGRU) model to address the location invariance problem existing in ConvLSTM. To
memorize spatial and temporal information simultaneously, Wang et al. [22] presented a
general framework called the predictive RNN (PredRNN), which makes the states flow in
two directions. Tuyen et al. [23] designed RainPredRNN, which could reduce the number
of calculated operations based on PredRNN. In addition, Jing et al. [24] exploited radar
images at three altitudes to extrapolate those at one and addressed the blurry prediction
problem with adversarial training. A generative adversarial network (GAN) architecture
was also applied by Ravuri et al. [19] to generate more sharp future radar images via a
ConvRNN. Moreover, since observation images can be considered video sequences con-
tinuously recorded with a fixed “camera”, other advanced ConvRNN models for video
prediction [25,26] can also be applied to convective nowcasting.

Although it has already been concluded that a simple convolutional architecture can
outperform recurrent architectures on diverse sequence modeling tasks [27,28], ConvRNNs
are more generally used for spatiotemporal sequence forecasting than those using CNNs. In
the past two years, the application of CNNs to extrapolation-based convective nowcasting
has attracted increasing attention. Unlike ConvRNN-based extrapolation methods that
explicitly model time, CNN-based approaches consider the forecasting task as an image-to-
image translation problem, which aims to directly transform multiple concatenated past
images into a future image/image sequence through layer-by-layer mapping [18,29–31].
Among the numerous available CNN models, UNet [32] can combine high-level and low-
level features through skip connections to exploit more comprehensive information for
future image generation, leading to increasing applications in radar-based nowcasting.
For example, Agrawal et al. [18] used UNet to provide three pixel-level binary classifi-
cations that indicated whether the future rainfall intensity in the given pixel exceeded
corresponding thresholds. Instead of predicting classes, UNet was applied in [20,33–35]
to extrapolate radar images directly. Han et al. [20] demonstrated that UNet achieved
comparable extrapolation performance to a ConvRNN-based model. The recent successes
of UNet in the above applications indicate that the role of CNNs in extrapolation-based
convective nowcasting needs to be reconsidered.
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However, these two types of DNNs still have some limitations. First, it is not easy for
standard ConvRNN models to tailor their predictions at different timestamps. One reason
is that their sequence-to-sequence (Seq2Seq) structures use the same weights to generate the
hidden states of all timestamps. Second, CNN models mainly emphasize spatial features
while weakening the temporal variations between the input images, leading to difficulty
learning relatively long-range temporal dependencies. Even though a few studies have
noticed that 3D convolutions can extract spatiotemporal representations [36,37], they still
follow the image-to-image translation paradigm and rarely explicitly model the temporal
correlations among the extracted features in the prediction stage.

To leverage the advantages of the UNet and ConvRNN models while avoiding the
above limitations, we develop a radar echo extrapolation model called 3D-UNet-LSTM
for convective nowcasting, which combines 3D-UNet and a newly designed Seq2Seq
network in an extractor-forecaster architecture. We first adopt 3D-UNet as the extractor to
extract the spatiotemporal features of the input radar reflectivity images while retaining
more detailed information, such as textures. In the forecaster, the Seq2Seq network uses
different unstacked ConvLSTM layers to iteratively generate hidden states for different
future timestamps. Finally, these hidden states are mapped to predicted images via a
convolution layer.

The remainder of this paper is organized as follows. Section 2 describes the data
used in this paper, and Section 3 illustrates the proposed model, the loss function, and the
evaluation metrics in detail. The experimental results are presented in Section 4. Finally, a
summary and discussions are given in Section 5. Appendix A briefly introduces some prior
knowledge related to our work.

2. Data

The radar reflectivity data used in this paper are provided by an open meteorological
database named MeteoNet [38], which covers two geographical areas, the northwest zone
(NW) and southeast zone (SE) of France in Figure 1, and spans 3 years, 2016 to 2018, with
5-min intervals.

Figure 1. The geographical regions used for the radar reflectivity data (red rectangle).

The data were collected using the Doppler radar network of METEO FRANCE, and
3D reflectivity maps were obtained by each radar scanning the sky. The radar’s spatial
resolution is 0.01 degrees, and the projection system used is EPSG:4326.

To build our dataset, we first generate 1.5-h radar image sequences (each sequence has
19 radar images) every 25 min. Next, sequence samples are selected if the total number of
pixels with reflectivity values ≥ 35 dBZ in one of their last 12 images exceeds 2000, and a
total of 12,503 sequence samples are collected. To reduce the computational and memory
cost and maintain adequate spatial resolution, the images in each sequencing sample are
resized from 565 × 784 to 104 × 160 through bilinear interpolation, with a spatial resolution
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of approximately 0.05 degrees. Finally, to test the generalization ability of the proposed
model, we ensure that the training, validation, and test subsets do not overlap in time, the
details of which are shown in Table 1.

Table 1. The divided subsets for training, validation, and testing.

Period
Sample Number

Total
NW SE

Training 2016.1–2018.5 5504 4865 10,369
Validation 2018.6–2018.7 480 517 997

Test 2018.8–2018.10 308 829 1137

In addition, the reflectivity (in dBZ) can be approximated to a rainfall intensity R
(mm/h) by using the Marshall-Palmer relation:

dBZ = 10 log a + 10b log R (1)

where a = 200 and b = 1.6.

3. Methodology

Consecutive radar images can directly show the evolution of convective systems. In
this section, we propose a DNN model called 3D-UNet-LSTM to extrapolate future radar
reflectivity images. The locations and intensities of convective systems over a very short
term can be foreseen according to the extrapolated results. M consecutive radar images
are given to predict the subsequent N radar images. In the implementation, we use the
radar images in the past 0.5 h to forecast those in the next 1 h (i.e., M = 7, N = 12). We
describe the architecture of 3D-UNet-LSTM in Section 3.1 and introduce the loss function
and evaluation metrics in Section 3.2 and Section 3.3, respectively.

3.1. 3D-UNet-LSTM

The proposed 3D-UNet-LSTM is an end-to-end trainable model with an extractor-
forecaster architecture, as illustrated in Figure 2. In the extractor part, we use 3D-UNet [39]
to extract the comprehensive spatiotemporal features of consecutive radar images. It is
composed of multiple 3D convolutional layers with kernel sizes of 2 × 3 × 3, each of which
is followed by a rectified linear unit (ReLU) activation function. Like UNet, the extractor
contains a downsampling path, a symmetrical upsampling path and skip connections.
Since skip connections require the temporal and spatial sizes of the features before each
downsampling operation to be consistent with those observed after the symmetrical up-
sampling operation, we add a zero image before the 7 consecutive radar images and stack
them along the temporal dimension as the model input. In the downsampling path, the
temporal and spatial sizes of the input sequence are progressively halved by using three 3D
convolutional layers with strides of 2, each followed by two 3D convolutional layers, and
spatiotemporal features with different representation levels are extracted. In the upsam-
pling path, the high-level features gradually return to the original size via three transposed
3D convolutional layers, each followed by two 3D convolutional layers. Furthermore, low-
level features are received from the downsampling path through skip connections, bringing
detailed information to the more comprehensive representations. Batch normalization
(BN) [40] is used after the last convolutional layer to mitigate the vanishing gradient effect
during backward propagation. After that, the comprehensive spatiotemporal features of
the radar image sequence are output.
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Figure 2. The 3D-UNet-LSTM architecture. ‘k’ and ‘s’ represent the kernel size and the stride for a
convolution, respectively.

The forecaster part is designed to further exploit the spatiotemporal features extracted
by the extractor and output the predicted radar images. This part, a Seq2Seq network is
presented to explicitly model time and extrapolate the hidden states step-by-step. ConvL-
STM is selected as the basic unit due to its simplicity and effectiveness. For the Seq2Seq
structure, considering the two common structures in Figure A1 that use shared parame-
ters to generate hidden states for the predictions over all future timestamps, their ability
to make corresponding adjustments according to the specific situations encountered at
different timestamps in the future may be limited. To alleviate this problem, we utilize N
ConvLSTM layers that have different parameters to individually generate the hidden states
for future timestamps in an iterative way, as shown in Figure 2, each ConvLSTM layer has
a step length of 8 with a convolutional kernel size of 3 × 3 and 64 hidden state channels,
thereby exploiting the long-term spatiotemporal information of the inputs and obtaining a
hidden state correlated with a specific future timestamp. The hidden state output by the
previous ConvLSTM layer is concatenated behind the inputs of the last 7 timestamps of this
layer. Then, these are fed into the next layer to output the hidden state of the next future
timestamp. In addition to utilizing different layers to tailor the predictions for different
timestamps, the iterative design can ensure that the previous features, whether extracted
by the extractor or generated by specific ConvLSTM layers, can be reused multiple times;
thus, it is also helpful in improving the quality of long-term forecasts. Finally, the hidden
state at each future timestamp is converted to a corresponding radar reflectivity image
through a 2D convolutional layer with a kernel size of 1 × 1.

3.2. Loss Function

In many spatiotemporal sequence forecasting tasks, such as video prediction and traffic
flow prediction, where the pixel values of images are relatively evenly distributed, the
mean absolute error (MAE) and mean squared error (MSE) are used as the loss functions to
train DNN models. However, for radar reflectivity images, the proportion of low-intensity
pixels is much larger than that of high-intensity pixels [21]. Training the extrapolation
model with the original MAE and MSE losses will make it focus on predicting low-intensity
pixels (indicating no weather echoes and weak echoes), limiting the forecasting effect in
areas with relatively strong echoes associated with hazardous convection. To achieve better
forecasting performance for strong echoes, we introduce a balanced reconstruction loss
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function LB−rec that assigns greater weights to the errors of higher reflectivity values in the
calculation process:

LB−rec =
1

NHW

N

∑
n=1

H

∑
i=1

W

∑
j=1

{
weightt+n,i,j ×

[∣∣It+n,i,j − Ît+n,i,j
∣∣+
(

It+n,i,j − Ît+n,i,j
)2
]}

(2)

weightt+n,i,j =

⎧
⎨
⎩

1, It+n,i,j < 15dBZ

2, 15dBZ ≤ It+n,i,j < 35dBZ

5, 35dBZ ≤ It+n,i,j

(3)

where It+n,i,j denotes the observed reflectivity value of the (i, j)th pixel of the future image
at timestamp t + n, and Ît+n,i,j denotes the corresponding predicted value. weightt+n,i,j is
the weight assigned to each pixel according to the range of its observed reflectivity. H and
W are the height and width of the radar images, respectively. As in previous work [20,21,41],
the values of weightt+n,i,j are determined based on experience. The prediction errors of high
reflectivity values are given larger weights compared to those of low reflectivity values,
but the difference between weights is only 2–3 times. Finally, the weights are determined
by experiment. We verify the effectiveness of the balanced reconstruction loss function in
Section 4.

3.3. Evaluation Metrics

To quantitatively evaluate the nowcasting performance of extrapolation models, we
apply the probability of detection (POD), false-alarm ratio (FAR), bias score (BIAS), crit-
ical success index (CSI), root mean square error (RMSE) and correlation coefficient (CC)
and design a temporally weighted average CSI (twaCSI) measure. These metrics can be
computed based on a given threshold τ, representing a corresponding echo intensity level.
CSI can provide a ratio of correct predictions. For its calculation, the observed image and
predicted image are first binarized by a threshold τ. A pixel value greater than τ is set
to 1; otherwise, it is set to 0. Then, TP, FN, and FP, which denote the numbers of true
positives (prediction = 1, observation = 1), false negatives (prediction = 0, observation = 1)
and false positives (prediction = 1, observation = 0), respectively, are obtained. The CSI is
computed as

CSIτ =
TP

TP + FN + FP
(4)

Furthermore, considering it becomes more challenging to forecast radar images with
increasing lead time, we design twaCSIτ to evaluate the temporal sequence of predicted
radar images. It emphasizes the CSI scores of the images predicted at later timestamps by
assigning them heavier weights; this step is defined as

twaCSIτ =
∑

N
n=1 n·CSIτ

t+n

∑
N
n=1 n

(5)

where CSIτ
t+n is the CSI score of the predicted image at timestamp t + n.

POD and FAR would emphasize the amount of missed events and false alarms. Also,
including BIAS will give an idea about the deviation of predictions.

PODτ =
TP

TP + FN
(6)

FARτ =
FP

TP + FP
(7)

BIASτ =
TP + FP

TP + FN
(8)
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when BIAS > 1, the forecast result is stronger than the real; when BIAS < 1, the forecast
result is weaker; when BIAS = 1, the forecast deviation is 0, which is the highest prediction
skill. In addition, for each predicted image, we utilize RMSEτ and CCτ to present the
prediction error and consistency in the area where the observed reflectivities are greater
than τ. Denoting the sets of observed values larger than τ and the corresponding predicted
values as s and ŝ, respectively, RMSEτ and CCτ are calculated as follows:

RMSEτ =

√
1
|s| ∑

i=1
(si − ŝi)

2 (9)

CCτ =
Cov(s, ŝ)√

Var(s)·Var(ŝ)
(10)

where |s| represents the number of values in set s.
Specifically, we select 18 dBZ (0.5 mm/h, indicating rain or not [21]) and 35 dBZ (used

to identify strong convections [10]) as the thresholds.

4. Experiments and Results

To evaluate the effectiveness and superiority of the proposed 3D-UNet-LSTM model,
extrapolation-based 0–1 h nowcasting experiments are conducted. For comparison,
six baseline models and a state-of-the-art model are reimplemented, including the Eu-
lerian persistence model (hereafter called Persistence), which assumes that future radar
images do not differ from the most recent observed image, a conventional model based
on optical flow (Rainymotion [14]), five deep learning models including three four-layer
ConvRNN models (ConvLSTM [17], PredRNN [22], SA-ConvLSTM [26]), a U-Net [32]
model, and a state-of-the-art model (RainPredRNN [23]). In those models, ConvLSTM
adopts the “same-side” structure, and PredRNN and SA-ConvLSTM apply the “opposite-
side” structure.

We first separately train the 3D-UNet-LSTM model and the other deep learning models
on the training set and validation set following the settings in Section 4.1 and then compare
the performance of Persistence, Rainymotion and the well-trained models on the whole
test set in Section 4.2. Then, to verify the effectiveness of the model design, Section 4.3
compares the 3D-UNet-LSTM model with two variations, including 3D-UNet. Next, in
Section 4.4, we further investigate the impact of the balanced loss and adversarial loss
functions on the performance of DNNs in accurately predicting convective echoes. Finally,
two representative cases are studied in Section 4.5.

4.1. Implementation Details for Training

The radar reflectivity images are first normalized to [0, 1] and then fed into the DNN
models. For a fair comparison, all models are trained with the balanced reconstruction loss
function on the training set via the adaptive moment estimation (ADAM) optimizer [42]
with an initial learning rate of 10−4. The batch size of each training iteration is set to
4. To prevent overfitting, the training process is stopped if the twaCSI35 obtained on
the validation set is not improved for 20 epochs. All experiments are implemented in
TensorFlow [43] and executed on a TITAN RTX GPU (24 GB).

4.2. Quantitative Evaluation of Eight Models on the Test Set

We quantitatively evaluate the overall 0–1 h nowcasting performance of the proposed
3D-UNet-LSTM model, RainPredRNN and six baseline models with the CSI, twaCSI, CC
and RMSE scores (averaged over all 1137 samples) obtained on the test set. The twaCSI
results and the mean CSI, CC and RMSE values obtained for all lead times at thresholds of
18 and 35 dBZ are tabulated in Table 2. Persistence has the poorest scores for all metrics.
The optical flow based Rainymotion approach obviously performs better than Persistence
with the help of the calculated motion field. The six well-trained DNN models significantly
outperform the above two traditional models, which demonstrates the powerful modeling
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capability of deep learning. Among the ConvRNN models, although PredRNN achieves
the same performance as ConvLSTM in terms of the CSI and twaCSI, it obtains higher CC
and lower RMSE scores at both thresholds that the nowcasting values of PredRNN are more
precise and closely aligned with the ground truth than those of ConvLSTM. RainPredRNN
performs better than PredRNN with the help of the ST-LSTM unit and setting appropriate
hyperparameters. Another SA-ConvLSTM obtains similar CSI18 and twaCSI18 scores
compared to those of ConvLSTM, PredRNN and RainPredRNN. Yet, it is superior to both
when the threshold is set to 35 dBZ, particularly for twaCSI35, implying that SA-ConvLSTM
has a better nowcasting performance at longer lead times for echoes with high-intensity
levels. The UNet model, which does not have a special design for time series modeling,
obtains even better scores for all metrics than the above three advanced ConvRNN models
at the thresholds of 18 dBZ and 35 dBZ, which is noteworthy, as it shows the high potential
of the UNet architecture for extrapolation-based convective nowcasting. The proposed
3D-UNet-LSTM model yields the best nowcasting scores among the eight models, which
verifies its superiority. Greater improvements in the CSI and twaCSI are achieved at the
35 dBZ threshold than at the 18 dBZ threshold because we focus more on improving the
prediction accuracy for convective echoes, especially at longer lead times. In addition, the
best CC and RMSE scores obtained at both thresholds indicate that the predicted radar
reflectivities of 3D-UNet-LSTM are more precise and, thus better for estimating future
rainfall intensities.

Table 2. Overall performance of the eight models on the test set.

Method
CSI↑ twaCSI↑ CC↑ RMSE↓

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

Persistence 0.4181 0.2068 0.3591 0.1554 0.2644 0.0355 16.92 21.34
Rainymotion 0.5149 0.2675 0.4581 0.2107 0.3616 0.0694 14.01 17.69
ConvLSTM 0.5814 0.3244 0.5421 0.2786 0.4350 0.1007 10.70 12.89
PredRNN 0.5898 0.3278 0.5468 0.2755 0.4500 0.1256 10.58 12.78

RainPredRNN 0.5906 0.3314 0.5483 0.2868 0.4624 0.1363 10.45 12.63
SA-ConvLSTM 0.5811 0.3349 0.5444 0.2933 0.4422 0.1110 10.47 12.50

UNet 0.5938 0.3550 0.5497 0.2998 0.4707 0.1570 10.41 12.03
3D-UNet-LSTM 0.5990 0.3742 0.5512 0.3201 0.4853 0.1760 9.72 11.34

The best and second-best scores are marked in bold and underlined, respectively, ↑ which means that higher is
better, while ↓ lower is better.

The POD, FAR and BIAS values obtained for all lead times at thresholds of 18 and
35 dBZ are tabulated in Table 3. For the forecasting of medium and strong echoes, the BIAS
score of our proposed model is greater than 1, and the overall forecast results are strong.
The reason is that the model is designed to focus more on strong echoes. The model has the
best POD and FAR scores at the thresholds of 35 dBZ (strong echo).

Table 3. Evaluation scores of our proposed model with others.

Method
POD↑ FAR↓ BIAS

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

Persistence 0.5664 0.3202 0.4205 0.6727 0.9845 1.0220
Rainymotion 0.6525 0.3585 0.3170 0.5315 0.9546 0.7718
ConvLSTM 0.7887 0.4776 0.3230 0.5085 1.1795 0.9820
PredRNN 0.7888 0.4651 0.3129 0.4923 1.1622 0.9072

RainPredRNN 0.7953 0.4836 0.3206 0.5049 1.1584 1.0659
SA-ConvLSTM 0.8012 0.5021 0.3319 0.5133 1.2178 1.0384

UNet 0.8005 0.5480 0.3145 0.5136 1.1863 1.1500
3D-UNet-LSTM 0.8238 0.5610 0.3235 0.4844 1.2462 1.1489

The best and the second-best scores are marked in bold and underlined, respectively, ↑ which means that higher is
better, while ↓ lower is better.
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Beyond that, to directly show the convective nowcasting performance over time,
the CSI, CC and RMSE curves produced by the eight models at the 35 dBZ threshold
against different nowcasting lead times up to 60 min are plotted in Figure 3. The results
show that the performance of all extrapolation models deteriorates with increasing lead
times, which can be expected and mainly results from unavoidable error accumulation
and increasing uncertainty in the forecasting process. RainPredRNN and PredRNN obtain
similar performance on all metrics over time. In addition, we notice that although UNet
achieves a better overall performance in terms of mean CSI35 and RMSE35 in Table 2 than
the three ConvRNN models and RainPredRNN, this is largely due to the contribution
of its better scores for lead times between 5 and 30 min. Later, the performance of UNet
gradually becomes comparable to that of SA-ConvLSTM and is finally exceeded by that
approach for lead times beyond approximately 45 min. One reason for this phenomenon
presumably is that UNet focuses on maintaining or changing spatial appearances for radar
images but fails to capture the internal temporal dependencies; this appears to affect its
long-term prediction effectiveness.

Figure 3. The (a) CSI, (b) CC and (c) RMSE curves produced by the eight models at the 35 dBZ
threshold against different lead times. All values are the scores averaged over all cases in the test set
at the corresponding lead time.

In contrast, the proposed 3D-UNet-LSTM produces the best CSI35 value for any lead
time in one hour and achieves a score of more than 0.25 for 60-min nowcasts, while those of
other deep learning models are in the range of 0.21 to 0.23. The same is true for RMSE35; the
proposed model remains competitive over the whole period, and its superiority becomes
increasingly obvious at lead times after 30 min. For 60-min nowcasts, it reduces the average
error by almost 2 dBZ compared with UNet. In terms of CC35, the prediction results of the
proposed model exhibit consistency with the observation values, especially at shorter lead
times. Although its performance drops sharply as the lead time increases, our model still
achieves the highest CC35 scores compared to other models. In general, 3D-UNet-LSTM
has better early performance than UNet and consistently outperforms SA-ConvLSTM at
long lead times, demonstrating its effective spatiotemporal modeling ability and better
overall performance for convective nowcasting.

4.3. Evaluation of the Model Design

To evaluate the effectiveness of the 3D-UNet-LSTM model design, we first design
two variations of the model, one that removes the forecaster and retains the 3D-UNet
extractor only and another that replaces the forecaster with a two-layer ConvLSTM net-
work (this variation model is referred to as ‘3D-UNet + ConvLSTM’). Then, the overall
performance of the original ConvLSTM, UNet, 3D-UNet-LSTM and these two variations
are compared, as shown in Table 4. When only the 3D-UNet extractor is retained, it still
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outperforms ConvLSTM and UNet in terms of the metrics at the 35 dBZ threshold, indicat-
ing that the 3D-UNet extractor has good potential for convective nowcasting. However, as
we attempt to use a common ConvLSTM network to further leverage the features extracted
by 3D-UNet and generate future hidden states according to the shared parameters, the
nowcasting performance decreases considerably, becoming even worse than that of the
original ConvLSTM. In contrast, when utilizing our designed forecaster to produce future
hidden states with different parameters, the model obtains better scores than those of
3D-UNet, demonstrating the effectiveness of the forecaster.

Table 4. Quantitative evaluation of the model design.

Method
CSI↑ twaCSI↑ CC↑ RMSE↓

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

ConvLSTM 0.5814 0.3244 0.5421 0.2786 0.4350 0.1007 10.70 12.89
UNet 0.5938 0.3550 0.5497 0.2998 0.4707 0.1570 10.41 12.03

3D-UNet 0.5897 0.3642 0.5439 0.3099 0.4735 0.1687 10.27 11.76
3D-UNet + ConvLSTM 0.5567 0.3097 0.5197 0.2648 0.4208 0.1087 10.96 13.03

3D-UNet-LSTM 0.5990 0.3742 0.5512 0.3201 0.4853 0.1760 9.72 11.34

The best and second-best scores are marked in bold and underlined, respectively, ↑ which means that higher is
better, while ↓ lower is better.

We also draw the CSI35, CC35 and RMSE35 curves of these methods for different lead
times in Figure 4. It can be seen that by combining 3D-UNet and the forecaster, our model
has better performance than the other approaches for nearly all lead times. The superiority
of its design is more obvious for longer lead times.

Figure 4. The (a) CSI, (b) CC and (c) RMSE curves at the 35 dBZ threshold against different lead times
for the evaluation of the model design.

4.4. Evaluation of Different Loss Functions

In the following, we train the 3D-UNet-LSTM model with different loss functions
and test their effects on the prediction accuracy for convective echo regions. These loss
functions are the reconstruction loss (the sum of the MAE and MSE) widely used in video
prediction tasks [22,26], the sum of the reconstruction loss and adversarial loss, which
has been applied to address the blurring problem for echo prediction [24], the balanced
reconstruction loss [21] applied in this paper, and the sum of the balanced reconstruction
loss and adversarial loss [37,44]. The scaling factor of the adversarial loss is set to 0.03 to
ensure that it can exert a certain degree of influence on the model training process. When
the scaling factor is set to 0.003, its influence is quite slight. The results are shown in Table 5.
We can see that without using any weights for reflectivities, the reconstruction loss slightly
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improves the CSI18 and twaCSI18 scores but yields much poorer performance than that of
the balanced loss functions in terms of other metrics, especially CSI35 and twaCSI35. As
we add an adversarial term to the reconstruction loss, these gaps are slightly narrowed.
Regarding the balanced loss functions, the balanced reconstruction loss applied in this
paper obtains the best scores for all evaluation metrics at the 35 dBZ threshold.

Table 5. Quantitative evaluation of different loss functions.

Loss Function
CSI↑ twaCSI↑ CC↑ RMSE↓

18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ 18 dBZ 35 dBZ

Lrec 0.6045 0.3302 0.5575 0.2636 0.4460 0.1114 11.26 13.86
Lrec + 0.03L

g
adv 0.5950 0.3392 0.5463 0.2794 0.4535 0.1433 11.08 13.37

LB−rec 0.5990 0.3742 0.5512 0.3201 0.4853 0.1760 9.72 11.34

LB−rec + 0.003L
g
adv 0.5978 0.3716 0.5520 0.3161 0.4760 0.1622 10.12 11.57

LB−rec + 0.03L
g
adv 0.5884 0.3639 0.5385 0.3058 0.4635 0.1529 10.76 12.37

The best and second-best scores are marked in bold and underlined, respectively; ↑ which means that higher is
better, which ↓ means that lower is better.

Regarding its combination with an adversarial loss, the convective nowcasting per-
formance deteriorates with increasing scaling factors for the adversarial term. It can be
concluded that compared with the original reconstruction loss, the balanced loss can sig-
nificantly improve the convective nowcasting performance of a deep learning model. It
seems that adding an adversarial loss to the reconstruction loss can slightly improve the
prediction accuracy for convective echoes. However, for the balanced reconstruction loss,
adding an adversarial loss term is of no help for further increasing the prediction precision.

4.5. Representative Case Study

To qualitatively evaluate the performance of the proposed model, we select two
representative cases from the test set and visually examine the nowcasts produced by
different models. The images of two cases, including radar observations and nowcasts, are
presented in Figure 5 and Figure 6, respectively, and are displayed every 15 min to show
the evolutions of convective systems.

Figure 5 shows a representative case of local strong convective growth over northwest
France at a forecasting time of T = 7 August 2018, 11:55 UTC. In the input radar images,
it can be seen that an isolated convective cell is located in the west at time T - 30 min,
moving northeast together with other dispersed echoes, and the formation of a new strong
small-scale convective cell occurs in Region B at forecasting time T. For the ground-truth
observations in the next hour, the echoes continue to move in the northeast direction, and
during this period, the new convective cell gradually grows and appears to merge with
the older cell. Comparing the nowcasting results of each model with the ground truth,
one can observe that all models can capture the movements of most echoes. However,
the optical flow-based Rainymotion method simply advects the radar echoes. It fails to
forecast the subsequent growth and evolution of the newly formed convective cell because
it cannot completely model nonlinear processes. In contrast, all deep learning models
successfully forecast that the newly formed convective cell will grow at time T + 30 min but
underestimate its intensity. This under-forecasting problem, also called blurry prediction,
is common when utilizing deterministic deep learning models for radar echo extrapolation,
especially with longer lead times; this is mainly because a DNN model tends to average all
probable outcomes to a blurry prediction in a case in which it has difficulty dealing with
future uncertainty [45]. Nonetheless, the 30-min nowcast obtained by the 3D-UNet-LSTM
model is closer to the ground truth in terms of the horizontal extent of the convection than
those derived from other models. For the 60-min nowcasts, the forecasted intensities of the
old convective cell in the results of other deep learning models deviate considerably from
the ground truth, while the 3D-UNet-LSTM model and 3D-UNet model can maintain their
intensity values at relatively high levels (≥ 40 dBZ). It is noted that only the 3D-UNet-LSTM
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model forecasts a further growth trend in the size of the newly formed convective cell from
time T + 30 min to T + 60 min, and its 60-min nowcasting result also successfully depicts
the merging phenomenon of the two isolated convective echoes that occur in regions A and
B one hour later.

Figure 5. A representative case of local strong convective growth in the northwestern quarter of
France at a forecasting time of T = 7 August 2018, 11:55 UTC. Letters A–B represents different regions
where the proposed 3D-UNet-LSTM performs well.
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Figure 6. A representative case of squall line evolution in the southeastern quarter of France at a
forecasting time of T = 13 August 2018, 05:00 UTC. Letter A represents the region where the proposed
3D-UNet-LSTM performs well.

Another representative case is shown in Figure 6, which describes the evolution of a
severe squall line that occurs in southeast France at a forecasting time of T = 13 August
2018, 05:00 UTC. It is clear from the radar observations that a squall line is moving eastward
while the convective area behind it gradually becomes larger, and it finally develops into a
bow echo at time T + 60 min. As in the first case, all models provide relatively accurate
moving directions for the quasi-linear convective system. The 30-min nowcasts obtained
from all models, especially UNet, achieve good agreement with the radar observations,
presumably because the system evolves relatively slowly during the first half hour after
forecasting time T. However, for the 60-min nowcasts, it is difficult for the optical flow-
based Rainymotion method to predict the subsequent convective evolution. Although
the deep learning models successfully forecast that the convective area will expand in the
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future, significant differences remain between their 60-min nowcast performances. For
example, one can observe that the three ConvRNN models give misleading information
that high-impact meteorological hazards (reflectivity ≥ 40 dBZ) tend to decrease. Although
UNet and 3D-UNet effectively preserve their intensities, neither they nor the ConvRNN
models can forecast the bow echo structure at time T + 60 min. It is noted that the pro-
posed 3D-UNet-LSTM yields a more trustable 60-min nowcast in Region A with a realistic
bow echo structure (the region with reflectivity ≥ 40 dBZ in Figure 6) and a reasonable
intensity distribution than those of other models. Bow echo is bowed toward the direction
of movement. There are general weaknesses in reflectivity behind the bow. Only the
nowcasting results of the proposed approach depict the squall line-to-bow echo transition
clearly, indicating that 3D-UNet-LSTM has a better spatiotemporal modeling ability for the
complex nonlinear processes of convective echoes.

5. Conclusions

In this paper, we propose a novel deep learning model called 3D-UNet-LSTM to
precisely extrapolate radar reflectivity images for convective nowcasting. This model
combines a well-known CNN named 3D-UNet and a newly designed Seq2Seq network
in an extractor-forecaster architecture. We first apply 3D-UNet as the extractor to extract
the comprehensive spatiotemporal representations of input radar images. Then, in the
forecaster, the extracted features are further leveraged by the Seq2Seq network to individ-
ually generate hidden states for different future timestamps with different ConvLSTM
layers. These hidden states are finally transformed into predicted radar images by a
convolutional layer.

We conduct comparative experimental studies on a test set. The quantitative evalua-
tion results show that 3D-UNet-LSTM outperforms conventional methods and state-of-the-
art deep learning models regarding the prediction of convective echoes, particularly with
long lead times. In addition, the evaluation of the model design demonstrates the effective-
ness of the 3D-UNet extractor and the newly designed forecaster, as well as their combina-
tion. It is noteworthy that UNet-based models, especially 3D-UNet, achieve comparable or
even superior performance to that of some ConvRNN-based models. We also verify the
effectiveness of the utilized balanced loss function on the model performance for precisely
forecasting strong echoes. Finally, representative case studies qualitatively illustrate that
the 3D-UNet-LSTM model can better model the nonlinear processes of the evolutions of
convective echoes and produce more reasonable and location-accurate nowcasts.

Although the quantitative and qualitative comparison and analysis verify the superi-
ority and effectiveness of 3D-UNet-LSTM for extrapolation-based convective nowcasting,
some limitations remain. We think these should be noted and discussed. First, like other
deep learning models, the proposed model has difficulty forecasting convective initiation,
which is still challenging for the meteorological community. One main reason is that the
input reflectivity images cannot provide a DNN with sufficient early signals and character-
istics of convective initiation. From there, adding relevant radar variables to supplement
input reflectivities may be a promising direction. Second, the loss function has much room
for improvement and introducing an additional classification network and an effective
classification loss seems to be a good solution. Thirdly, we are currently working on only
one benchmark dataset and will try to conduct studies using different benchmark data. In
future work, we will carry out research on these three aspects.
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Appendix A

Existing studies that have applied ConvRNNs or CNNs to conduct extrapolation-
based convective nowcasting have included some important research directions, such as
developing effective networks and designing loss functions. Two key issues need to be
considered when designing a ConvRNN-based model: the basic ConvRNN unit and the
Seq2Seq structure. In this appendix, we briefly introduce the typical ConvLSTM unit and
the common Seq2Seq structures related to our method, as well as a typical adversarial loss
function that is evaluated in experiments.

Appendix A.1. ConvLSTM Unit

The ConvLSTM unit is the basic component of a ConvLSTM model [17]. It receives
the current input Xt, previous hidden state Ht−1, and temporal cell state Ct−1 to generate
a new hidden state Ht through a gate-controlled mechanism. This process can be
formulated as

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi) (A1)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + b f

)
(A2)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (A3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo) (A4)

Ht = ot ◦ tanh(Ct) (A5)

where W and b represent the trainable 2D convolution kernel and bias, respectively. σ is the
sigmoid activation function. ∗ and ◦ are the 2D convolution operation and the Hadamard
product, respectively. The information flow is controlled by an input gate it, a forget gate ft

and an output gate ot.

Appendix A.2. Structure

Two Seq2Seq structures were commonly used in prior works on RNN-based radar echo
extrapolation, including the “same-side” structure (Figure A1a) [19,21], in which the inputs
and predictions are on the same side, and the “opposite-side” structure (Figure A1b) [22,26],
in which the predictions are on the opposite side of the inputs. As we can see from
Figure A1, both structures can conduct direct multistep prediction by leveraging the shared
parameters to generate hidden states over all future timestamps. The “same-side” structure
is more suitable for input–output transformation since the spatial and channel sizes of
the inputs and predictions are allowed to be different, while the “opposite-side” structure
requires them to be consistent and can reduce the difficulty of training.
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Figure A1. Two commonly used Seq2Seq structures for RNN-based radar echo extrapolation (choos-
ing ConvLSTM as the basic unit). (a) The “same-side” structure; (b) The “opposite-side” structure.

Appendix A.3. Adversial Loss Function

A GAN [46] is a kind of architecture that is mostly used for image synthesis. A regular
GAN-based architecture consists of a generator and a discriminator. The generator outputs
images, and the discriminator is trained to distinguish whether its input is produced by
the generator or derived from the training dataset (binary classification). At the same time,
when training the generator with an adversarial loss function to fool the discriminator, the
quality of its output images is improved.

In recent years, some studies have treated the extrapolation model as the generator and
trained it in a GAN-based architecture with suitably designed adversarial loss functions
to improve the textures of predicted images [19,24,44,47,48]. In that context, a simple yet
effective adversarial loss function [48] can be defined as:

L
g
adv = Ex[1 − D({x, G(x)})] (A6)

Ld
adv = Ex,y[1 − D({x, y})] + Ex[D({x, G(x)})] (A7)

where L
g
adv and Ld

adv denote the loss functions of the generator G and discriminator D,
respectively. The generator G takes radar images x as input and generates predicted images
G(x), intended to have the same echo distribution as y, the training (ground-truth) data.
D(·) is the output of the discriminator D. {} represents the concatenation operation.
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Abstract: Remote sensing object detection is a basic yet challenging task in remote sensing image
understanding. In contrast to horizontal objects, remote sensing objects are commonly densely packed
with arbitrary orientations and highly complex backgrounds. Existing object detection methods
lack an effective mechanism to exploit these characteristics and distinguish various targets. Unlike
mainstream approaches ignoring spatial interaction among targets, this paper proposes a shape-
adaptive repulsion constraint on point representation to capture geometric information of densely
distributed remote sensing objects with arbitrary orientations. Specifically, (1) we first introduce a
shape-adaptive center-ness quality assessment strategy to penalize the bounding boxes having a
large margin shift from the center point. Then, (2) we design a novel oriented repulsion regression
loss to distinguish densely packed targets: closer to the target and farther from surrounding objects.
Experimental results on four challenging datasets, including DOTA, HRSC2016, UCAS-AOD, and
WHU-RSONE-OBB, demonstrate the effectiveness of our proposed approach.

Keywords: remote sensing object detection; point representation; sample quality assessment; aerial
target recognition; center-ness quality

1. Introduction

With the improvement of imaging quality, remote sensing images have been applied in
many fields. As the basis of many remote sensing image applications, the quality of remote
sensing object detection directly affects the effect of downstream applications. Generally
speaking, object detection aims at identifying the categories of objects of interest and
locating their position and can be divided into horizontal object detection and oriented
object detection according to the expression of the bounding box. Since the seminal creative
work: R-CNN [1] and its successive improvements [2,3], horizontal object detection has
achieved significant progress. As a fundamental yet essential sub-task in object detection,
the development of oriented object detection has fallen behind horizontal object detection
since it requires a more sophisticated mechanism to locate objects precisely. Recently,
remote sensing object detection has drawn increasing attention. However, a significant
and recurrent problem is that remote sensing objects are often in multiple scales with
arbitrary orientations [4–6] and in densely packed distributions with complex background
contexts [7–9]. Based on the horizontal bounding box, oriented object detection utilizes an
angle parameter to position large aspect ratio objects and small remote sensing objects in
a crowded environment. Besides, oriented bounding boxes can minimize the error effect
caused by the non-maximum suppression compared with horizontal bounding boxes.

The mainstreamed-oriented object detection approaches typically take the perspective
that horizontal object detection is a special case for oriented object detection. Accordingly,
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most oriented object detectors are often inherited from the classical horizontal detectors
with an extra orientation parameter θ. As shown in Figure 1, oriented object detectors
utilize an extra parameter θ to describe the orientation information of the target object, in
other words, five parameters (x, y, w, h, θ). The oriented bounding box provides a more
precise localization of the objects. Especially for the large aspect ratio and small targets,
the angle parameter θ and center point (x, y) play a more significant role in the positioning
paradigm. Taking ship detection as an example, detecting a ship in Figure 1a using a
horizontal bounding box has an inferior performance compared with using an oriented
bounding box in Figure 1b as more than half the area of the horizontal bounding box does
not belong to the ship.

(a) Horizontal bounding box (b) Oriented bounding box

Figure 1. Horizontal bounding box (a) versus oriented bounding box (b), taking ship detection
as an example. Point (x, y) denotes the coordinates of the center point of the target, while (w, h)

denotes the width and height of the bounding boxes, respectively. The oriented bounding box, in
particular, utilizes an extra parameter θ to represent the angle information making it better for locating
aerial targets.

Most approaches treat oriented object detection as a problem of oriented object local-
ization and the orientation regression-based methods [4,10,11] play the most important role
in the research area. Benefiting from [12–14], these methods have achieved gratifying per-
formance in research and application. However, the mechanism of angle-based regression
methods has congenital drawbacks, including loss discontinuity and regression inconsis-
tency [15–17]. These shortcomings are attributed to the periodicity of angular orientation
and the specification of the oriented bounding box. For example, a bounding box rotated
one degree clockwise or counterclockwise around the ground truth is equivalent under the
Intersection over Union (IoU) evaluation metric. The transformation of five parameters
(x, y, w, h, θ) and eight parameters (x1, y1, x2, y2, x3, y3, x4, y4) also contains discontinuity of
the loss problem caused by the order of the four points. The set {(xi, yi), i = 1, 2, 3, 4} de-
notes four corner points of an oriented bounding box, respectively. Besides, some two-stage
methods such as [4,9,18] design various complex modules to extract rotated features from
the Region of Interest (RoI) and increase the computational complexity of the detectors.

Besides the discontinuity and complexity problems, orientated object detection has
the challenge of precisely locating small and cluttered objects. This is especially true
for aerial images, which are vital in remote sensing applications. To address this issue,
SCRDet [9] proposed a pixel attention network and a channel attention network to suppress
the noise and highlight object features. DRN [19] proposed a feature selection module and
a dynamic refinement head to improve the receptive fields in accordance with the shapes
and orientations of small and cluttered objects. However, these mainstream methods ignore
spatial interaction among targets. While a vast majority of aerial images are taken from
the bird’s-view perspective, most targets are insufficiently covered by their surrounding
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targets. This fundamental feature of aerial targets is underutilized, and hence, spatial
relative information should be considered in detector regression procedures.

Another challenge for oriented object detection is the design of sample assessment. As
reported in [20–23], the selection, verification, and evaluation of samples can significantly
improve the detectors’ performance. ATSS [20] proved that the selection of positive and
negative samples can improve the performance of detectors and proposed an adaptive
sample assignment strategy. Chen et al. [21] discovered that joint inference with sample
verification has a promising improvement over its foundation [24]. Hou et al. [22] con-
sidered shape information and measured the quality of proposals. Li et al. [23] proposed
adaptive points assessment and assignment to improve the classification confidence and
localization score. As pointed out in [25], the center-ness information plays a significant
role in object localization. However, existing works do not have an effective measure of it.

As discussed above, the challenges associated with oriented object detection can be
summarized as follows:

• The discontinuity of loss and the regression inconsistency caused by the expression of
the oriented bounding box.

• The difficulty of locating small and cluttered objects precisely and the lack of spatial
interaction among targets.

• Effective selection, verification, and assessment of samples and proposals, especially
center-ness quality.

In this paper, we proposed repulsion and center-ness constraints based on RepPoints
to improve remote sensing object detection. Firstly, we explore the representation of
oriented objects in order to avoid the challenges caused by the oriented bounding box.
As determined in RepPoints [21,24], point sets have demonstrated great potential while
capturing vital semantic features produced by the multiple convolutional layers. In contrast
to the conventional convolutional neural networks, RepPoints can have a weighted and
wider reception field benefiting from [26]. To generate bounding boxes, a conversion
function is applied to transform points into rectangles. For example, the conversion
function MinAreaRect uses the oriented rectangle with minimum area to cover all the
points in the learned point set over a target object. Secondly, as RepPoints only regresses
the key points in the semantic feature maps but ignores measuring the quality of point
sets, it attains an inferior performance for images with densely packed distributions and
complex scenes. Therefore, we introduce the addition of a measuring strategy of center-
ness to filter noisy samples located away from the center points of bounding boxes based
on [23]. Thirdly, we design a novel loss function named oriented repulsion regression
loss to illustrate the spatial interaction among targets. Specifically, we make the predicted
bounding boxes closer to their corresponding ground truth boxes and farther from other
ground truth boxes and predicted boxes, inspired by [27]. The main contributions of this
paper are summarized as follows:

1. We utilize adaptive point sets to represent oriented bounding boxes to eliminate
discontinuity and inconsistency and to capture key points with substantial semantic
and geometric information.

2. We propose a center-ness constraint to measure the deviation of the point set to the
center point in the feature map aiming to filter low-quality proposals and improve
the localization accuracy.

3. We design a novel repulsion regression loss to effectively illustrate spatial information
among remote sensing objects: closer to the target and farther from surrounding
objects, especially helpful for small and cluttered objects.

In addition, to evaluate the effectiveness of our proposed method, we conducted a
series of experiments on four challenging datasets, DOTA [28], HRSC2016 [29], UCAS-
AOD [30], and WHU-RSONE-OBB [31], and obtained consistent and promising state-of-
the-art results.
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2. Related Work and Method

In this section, we first review the related studies of oriented object detection before
providing sufficient information to illustrate our proposed methods.

2.1. Related Work

2.1.1. Oriented Object Detection

For several years, the representation of bounding boxes in object detection has been
dominated by horizontal bounding boxes. With the increasing demand for object detection
with arbitrary orientations, such as text localization and remote sensing object position-
ing, oriented object detection has drawn more attention. Recent advances in oriented
object detection [4,9,16,32] are mainly derived from classical object detectors adapting
horizontal object detectors with oriented bounding boxes to satisfy multi-oriented object
detection. Generally, anchor-based oriented object detection can be divided into four
categories: (1) generating rotated proposal regions directly and classifying the class of se-
lected regions [4,10]; (2) regressing the angle parameter θ in a five parameter representation
(x, y, w, h, θ) directly or based on horizontal proposal regions [5,9,33–35]; (3) using shape
mask predicted by the mask branch to locate the object region [36]; and (4) transforming
regression of the angle parameter into classification problem to address the periodicity of
the angle and boundary discontinuity [16,17]. Although the anchor-based methods have
achieved promising results, there are still some limitations for anchor-based detectors, such
as various hyperparameters, complex post-processing, and overlapping calculation.

To further improve the efficiency of oriented object detection, some modifications have
been made to anchor-free detectors for horizontal object detection, including key point-
based methods [37,38], pixel-based methods [25], and point set-based methods [21,24].
Many superior methods have emerged verifying the effectiveness of the representation
mentioned above. For example, O2-Det [39] uses a pair of corresponding middle lines to
locate rotated objects. In terms of overlapping calculation and boundary discontinuity,
Yang et al. [40,41] transform the regression of the rotated bounding box to the Wasserstein
Distance or Kullback–Leibler Divergence of 2-D Gaussian distributions, which achieves
desirable results in oriented object detection.

2.1.2. Sample Assignment for Object Detection

Conventional object detection methods select positive and negative samples based on
the fixed IoU threshold, i.e., MaxIoU strategy, which adopts IoU values as the only match-
ing metric. Nevertheless, IoU-based assignment methods ignore the quality of training
samples caused by the noise in the surroundings [42]. Various excellent adaptive sample
assignment strategies have been proposed recently, which convert sample assignment into
an optimization problem to select high-quality training samples. ATSS [20] uses a dynamic
IoU threshold based on the statistical characteristic from the ground truth for the sample
selection. FreeAnchor [43] enables the network to autonomously learn which anchor to
match with the ground truth under the maximum likelihood principle. PPA [44] models
the anchor assignment as a probabilistic procedure and calculates the scores of all anchors
based on a probability distribution to determine the positive samples. DAL [45] defines a
matching degree and sensitive loss to measure the localization potential of anchors, which
enhances the correlation between classification and regression. SASM [22] utilizes the mean
and standard deviation of the objects to capture shape information and add loss weights to
each positive sample based on the quality.

In this paper, we divide the assignment into two phases: the initial stage and the
refinement stage. In the initial stage, we utilize an IoU-based sample assignment, while we
add a series of quality assessment strategies in the refinement stage, including center-ness
constraint to filter noisy samples that can significantly enhance the effectiveness of adaptive
points learning.
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2.2. Overview of the Proposed Method

To alleviate boundary discontinuity, we adopt the adaptive point set proposed by [24]
as a sophisticated representation of oriented bounding boxes instead of directly regressing
the five parameters (x, y, w, h, θ). As a fine-grained representation, a point set enables
the detectors to capture key points with substantial semantic information and geometric
structure, which helps locate small and densely packed objects with arbitrary orientations.
To converge from the ground truth boxes, a differentiable conversion function is applied
to get oriented bounding boxes from the representative points. In the backward process,
the coordinates are updated through the loss designed to adaptively cover an oriented
object. To improve the effectiveness of adaptive point sets, we suggest a center-ness quality
assessment strategy based on [23] for an additional constraint on the selected positive
samples, which can make adaptive points concentrate more on the object rather than the
background. To further address the issue of the localization of small and cluttered objects,
we design a repulsion constraint in the form of a loss function, which makes the proposal
bounding boxes closer to their ground truth boxes while farther from the other surrounding
ground truth or proposal boxes. The assignment of samples is divided into two phases.
In the initial stage, the detector selects positive samples according to the IoU values. To
improve the qualities of the selected samples, we design an assessment module to score each
sample, where the center-ness constraint score is calculated to filter low-quality samples
alongside the orientation, classification, and localization quality measurement strategies.
In the refinement stage, only high-quality samples selected by the assessment module are
used to calculate loss values. Figure 2 illustrates an overview of our proposed anchor-free
oriented object detector based on Reppoint.

Feture Pyramid NetworkBackbone

Shared offset

Conversion function

Initial stage Refinement stage

Pre-assign

Center-ness
Oritation
Classfication
Location

Quality assessment

Only train:
Train & test:

Assessment module

Re-assign

Conv

Conv

DCN

DCN

Conv

Conv

Classification
Branch

Regression
Branch

DCN

Deformable Convolutional Network

Conv

Convolution Block

Figure 2. The pipeline of our proposed object detector. The proposed method is an anchor-free
detector based on Reppoint [24] with adaptive point sets as the representation of an oriented bounding
box, where a classical backbone with FPN [12] network is employed to encode multi-scale features.
Deformable Convolutional Network (DCN) is utilized to capture shape-aware features. To cope with
the harmony of the classification branch and the regression branch, the offset parameter is shared in
the DCN block.

290



Remote Sens. 2023, 15, 1479

2.3. Deformable Convolutional Network

Traditional object detectors mainly use Convolutional Neural Networks (CNN) for
feature encoding. However, the fixed receptive field of CNN leads to the defect that CNN
can not capture information in the neighboring area. In the remote sensing images, objects
are often sharply variable shapes, e.g., square tennis court and slender ship. While the
defect appears to be more apparent, we alleviate it by adopting the Deformable Convolu-
tional Network (DCN) [26] both in the classification and regression branches to capture
shape-aware features of the objects. The process of DCN can be formulated as shown in
Equation (1).

y(p0) = ∑
pn∈R

w(pn) · x(po + pn + ∆pn), (1)

where w(·) denotes the filter weights, R = {(−1,−1), (−1, 0), · · · , (1, 0), (1, 1)} is receptive
field size and dilation taking a 3 × 3 kernel with dilation 1 as an example. {∆pn|n =
1, · · · , N}, N = |R| is the offset set of each point in the receptive field, and is calculated as
shown in Equation (2).

∆pn = Conv(Fi)−R, i ∈ {1, · · · , 5}, (2)

where Fi denotes the i-th scale feature map, and R is the standard CNN receptive field.
The function Conv(·) denotes a series of CNN layers and the dimension of its output is
w × h × 18, where w and h are the width and height of Fi, respectively.

As shown in Figure 3, benefitting from the offset parameters, DCN gains the ability to
aggregate information from the wider neighboring areas. As the offsets and the convolu-
tional kernels are learned simultaneously during training, DCN can obtain dynamic and
adaptive features of objects and is more sensitive to the variable shapes. More importantly,
the inherent characteristic of DCN, i.e., learnable offset, perfectly fits the adaptive point set,
which provides a more accurate localization of the oriented objects.

Filter

(a) Standard CNN

FilterOffset

(b) DCN

Figure 3. Illustration of standard CNN in (a) and DCN in (b). DCN utilizes an additional offset
learned from the feature map to obtain a wider receptive field compared with CNN.

2.4. Center-Ness Constraint for Oriented Object Detection

Sample selection plays a critical role in the performance of detectors. Conventional
IoU-based sample selection strategies overlook the shape information of the selected sam-
ples, which introduces many noisy samples and deteriorates the unbalance of positive
and negative samples. In our proposed method, we divide the sample assignment into
two phases: the initial stage and the refinement stage. In the refinement stage, all selected
samples are assessed through our designed center-ness constraint alongside other strategies
proposed by [23]. The center-ness constraint is first suggested in FCOS [25], aiming to
remove redundant and meaningless proposal bounding boxes for horizontal object detec-
tion. Simply applying it in oriented object detection will introduce additional inconsistency
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between the distribution of the center-ness score and the oriented box. Concretely, the
horizontal center-ness quality can not fit the oriented bounding box, as shown in Figure 4a.
To modify this defect, we re-formulate the center-ness calculation process and make it
fit the oriented bounding box appropriately. A horizontal bounding box can be simply
expressed by (x, y, w, h), where (x, y), w, h denote the center point, width, and height of
the horizontal bounding box, respectively. The center-ness score can be directly calculated
by the offsets of the center point to the four edges.

(a) Horizontal center-ness (b) Oriented center-ness

Figure 4. Heatmap of the horizontal and oriented center-ness. The distributions of horizontal and
oriented center-ness scores are indicated by the ellipses with a yellow dotted outline.

In our proposed method, we utilize a point set P with nine points to represent an
oriented bounding box, which is defined in Equation (3).

P = {(xi, yi)|i ∈ {1, · · · , 9}}, (3)

where each (xi, yi) in P is calculated by the corresponding offset ∆pn and point (x, y) in the
feature map projected to the original size of the input image. The process can be expressed
as shown in Equation (4).

(xi, yi) = (x, y) + ∆pi. (4)

To simplify the computation procedure, the point set P is converted into a rotated rect-
angle through the MinAeraRect(·) function to measure the center-ness quality. MinAreaRect
uses the oriented rectangle with minimum area to cover all the points in P . Equation (5)
demonstrates how this conversion is formulated.

(x1, y1, x2, y2, x3, y3, x4, y4) = MinAeraRect(P), (5)

where (x1, y1, x2, y2, x3, y3, x4, y4) denotes the four corner points of an oriented bound-
ing box.

Since the vanilla center-ness proposed by FCOS [25] is measured w.r.t the axis-aligned
edges, which can not be directly applied in oriented object detection, as shown in Figure 4,
we suggest a distance function in the form of the cross product between the feature map
point (x, y) and two adjacent corner points (c1

x, c1
y) and (c2

x, c2
y), as shown in Equation (6).

crossdist(c1
x, c1

y, c2
x, c2

y|x, y) =
v1 × v2

‖v1‖

=
|(c2

x − c1
x)(c

1
y − y)− (c1

x − x)(c2
y − c1

y)|√
(c2

x − c1
x)

2 + (c2
y − c1

y)
2

(6)
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With this formula, we can obtain four distance values between the four corner points
(x1, y1, x2, y2, x3, y3, x4, y4), as defined in Equation (7), given an oriented bounding box and
feature map point (x, y).

a = crossdist(x1, y1, x2, y2|x, y)

b = crossdist(x2, y2, x3, y3|x, y)

c = crossdist(x3, y3, x4, y4|x, y)

d = crossdist(x4, y4, x1, y1|x, y)

(7)

The oriented center-ness quality is then calculated as shown in Equation (8).

Qcenterness =

(
min(a, c)

max(a, c)
· min(b, d)

max(b, d)

) 1
γ

, (8)

where γ is a hyper-parameter to control the sensitivity of the center-ness quality. As shown
in Figure 5, the oriented center-ness constraint measured by the function above sufficiently
evaluates the quality of an oriented bounding box. Qcenterness ranges from 0 to 1, depending
on whether the feature point is on the edges or at the center point, respectively. The
closer the feature point is to the center point of an oriented bounding box, the higher the
quality score. The goal of oriented center-ness is to remove redundant and low-quality
bounding boxes generated in the initial stage, which will reduce the computational cost in
the post-processing steps, e.g., NMS.

Figure 5. Illustration of the oriented center-ness. The four blue dots, red dots, and green dots denote
the corner points of an oriented bounding box, the feature map point (x, y), and the center point of
the oriented bounding box, respectively.

Based on the quality measurement strategy Q, we re-assign the samples selected in
the initial stage according to the quality scores. Only the top k samples are selected for each
ground truth. To retrieve high-quality samples, a ratio σ is utilized to control the number
of samples. The value of k is calculated as shown in Equation (9).

k =

{
σ ∗ Nt, Nt ≥ 2
Nt, Nt < 2

(9)

where Nt denotes the number of proposals for each oriented object.

2.5. Repulsion Constraint for Oriented Object Detection

To address the issue of locating small and cluttered objects, we propose a repulsion
constraint to discriminate the densely distributed objects. As mentioned before, the vast
majority of aerial images are taken from the bird’s-view and small objects are mostly in
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crowded scenes such as a parking lot. To locate them precisely, we should consider the
spatial relative information, which means narrowing the gap between a proposal bounding
box and its corresponding ground truth box and being away from other surrounding
proposal and ground truth boxes. As illustrated in Figure 6, we utilize an IoU-based loss
function to realize the repulsion constraint. A perfect proposal bounding box should have
a maximum IoU to its ground truth while keeping IoUs within the surrounding ground
truth and proposal bounding boxes.

Target Ground Truth

Surrounding Ground Truth

Target Proposal

Surrounding Proposal

Figure 6. Visualization of repulsion constraint in the form of the loss function.

Inspired by [27], we divide the oriented repulsion loss into three components, defined
as shown in Equation (10).

Lrepulsion = Lattr + α ∗ Lrgt + β ∗ Lrp, (10)

where Lattr aims to narrow the gap between predicted boxes and ground truth boxes, while
Lrgt and Lrp are designed to minimize the intersection among the surrounding ground
truth and predicted boxes, respectively. Hyper-parameters α and β are used to balance the
loss weight.

In practice, there is an accommodation relationship among objects of different cate-
gories, e.g., aircraft and airports. For simplicity, we only consider the repulsion constraint
for the objects from the same category. Let P+ and G denote the sets of all positive samples
and all ground truth boxes, respectively.

Given a ground truth box G ∈ G, we assign the proposal containing the maximum
rotated IoU to it, denoted by PG

attr = argmaxP∈P+
rIoU(G, P). Then, Lattr can be calculated

as shown in Equation (11).

Lattr =
∑G∈G rIoU(G, PG

attr)

|G| , (11)

where rIoU(·) is used to calculate the IoU between the two oriented boxes.
Lrgt is designed to repel a predicted box from its neighboring ground truth box. Here,

we use intersection over ground truth: IoG(P, G) = area(P∩G)
area(G)

∈ (0, 1) to describe the
spatial relationship between a predicted box and its neighboring ground truth box. For
each G ∈ G, we define Lrgt as shown in Equation (12).

Lrgt =
∑P∈P+\PG

attr
Smoothln(IoG(P, G))

|P+|
, (12)

where Smoothln function is applied to adjust the sensitivity of Lrgt. Equation (13) provides
a definition of Smoothln.

Smoothln =

{
− ln(1 − x), x ≤ σ
x−σ
1−σ − ln(1 − σ), x > σ

(13)
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NMS is an essential post-processing step in most detectors to select or merge the
primary predicted bounding boxes. Especially for small and cluttered objects, NMS has a
significant effect on the detection results. To alleviate the detectors’ sensitivity to NMS, we
use an additional constraint Lrp to minimize the overlap of two predicted boxes Pi and Pj,
which are designated to different ground truth boxes. Equation (14) defines the definition
of Lrp.

Lrp =
∑i �=j Smoothln

(
rIoU

(
Pi, Pj

))

∑i �=j 1
[
rIoU

(
Pi, Pj

)
≥ 0
]
+ ǫ

, (14)

where 1(·) denotes the identity function and ǫ is introduced in case divided by 0.
Benefiting from the repulsion constraint, the loss Lrepulsion preserves the independence

among predicted boxes, while preventing them from shifting toward nearby ground truth
boxes, which makes the detector more robust to small and cluttered objects.

Eventually, the loss function of our proposed detector is formulated as shown in
Equation (15).

L = Lcls + λ1Lloc + λ2Lrepulsion, (15)

where Lcls denotes the object classification loss, Lloc denotes regression loss for object
localization, and Lrepulsion is repulsion constraint loss. In the experiment, we use focal
loss [13] for classification and GIoU loss [46] for oriented polygon regression.

3. Results

In this section, we first introduce four challenging datasets that we use to verify the
effectiveness of our proposed method, then describe the details of our experiment settings,
and finally illustrate our results on the datasets.

3.1. Datasets

DOTA [28] is one of the largest datasets for oriented object detection in aerial images;
it contains 15 categories: plane (PL), baseball diamond (BD), ground track field (GTF), small
vehicle (SV), large vehicle (LV), bridge (BR), tennis court (TC), storage tank (ST), ship (SH),
soccer ball field (SBF), harbor (HA), roundabout (RA), helicopter (HC), swimming pool
(SP), and basketball court (BC). Labeled objects are in a wide range of scales, shapes, and
orientations. DOTA contains 2806 images and 188,282 instances collected from different
sensors and platforms. Each images size ranges from 800 × 800 to 20,000 × 20,000 pixels.
The proportions of the training set, validation set, and testing set in DOTA are 1/2
(1411 images), 1/6 (458 images), and 1/3 (937 images), respectively. In our experiments,
both the training and validation sets are utilized to train the proposed detector and the
testing set without annotations for evaluation. All the images used for training were split
into patches of 1024 × 1024 pixels with a stride of 200 pixels. Data augmentation oper-
ations, including random resizing and flipping, were employed in the training stage to
avoid overfitting.

HRSC2016 [29] is a dataset for ship recognition that contains a large number of de-
formed strip and oriented ship objects collected from several famous harbors. The entire
dataset contains 1061 images with sizes ranging from 300 × 300 to 1500 × 900. For a fair
comparison, the training and validation sets (436 images and 181 images, 617 images in
total) are used for training, while the testing set (444 images) is used for evaluation. All
images are resized to 800 × 512 pixels for training and testing.

UCAS-AOD [30] is an aerial image dataset that labels airplanes and cars with oriented
bounding boxes. The dataset contains 1510 images with approximately 1280 × 659 pixels
(510 images for car detection and 1000 images for airplane detection). There are 14,596 in-
stances in total. The entire dataset is randomly divided into the training set, validation
set, and testing set with a ratio of 5:2:3, i.e., 755 images, 302 images, and 453 images,
respectively.
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WHU-RSONE-OBB [31] is a large-scale object detection dataset with oriented bound-
ing boxes that contains 5977 images ranging from 600 × 600 pixels to 1372 × 1024 pixels.
WHU-RSONE-OBB is a high spatial resolution remote sensing image dataset with spatial
resolution ranging from 0.5 m to 0.8 m. Objects are of three: airplanes, storage tanks, and
ships. Likewise, the training set (4781 images) and the validation set (598 images) were
employed for training while the testing set (598 images) was used for evaluation. All
images were resized to 1024 × 1024 pixels for both training and testing.

3.2. Implementation Details

We implement our proposed method based on MMRotate [47], an open-source toolbox
for rotated object detection based on PyTorch, and utilize ResNet-50 and ResNet-101 [48]
as the backbone with FPN [12]. The FPN block consists of P3 to P7 pyramid levels in the
experiments. The SGD optimizer was selected during training with an initial learning rate
of 0.008. The number of warming-up iterations was 500. At each decay step, the learning
rate was decreased by a factor of 0.1. The momentum and weight decay of SGD were set to
0.9 and 10−4, respectively. We trained the detector with 40 epochs, 120 epochs, 120 epochs,
and 40 epochs for DOTA, HRSC2016, UCAS-AOD, and WHU-RSONE-OBB, respectively.
In Equation (8), we set the sensitivity of center-ness to γ = 4. We set the balance weight
to α = 0.5 and β = 0.5 empirically in Equation (10). Meanwhile, the weights for Lloc and
Lrepulsion were set to λ1 = 1.0 and λ2 = 0.25 in Equation (15), respectively.

We conducted all the experiments on a server with 2 NVIDIA RTX 3090 GPUs with a
total batch size of four (two images per GPU) for training and a single NVIDIA RTX 3090
GPU for inference.

3.3. Comparisons with State-of-the-Art Methods

To verify the effectiveness of our proposed method, we conducted a series of experi-
ments on DOTA, HRSC, UCAS-AOD, and WHU-RSONE-OBB. We adopted mean average
precision (mAP) as the evaluation criteria for oriented object detection results, which can
be calculated as shown in Equation (16).

mAP =
1
n

n

∑
i

APi (16)

where APi denotes the value of the area under the precision–recall curve for the i-th class
and n is the number of categories in one dataset.

Results on DOTA. As shown in Table 1, we report all the experimental results on the
single-scale DOTA dataset to make fair comparisons with previous methods. The proposed
method based on RepPoints obtains 76.93% mAP and 76.79% mAP with the backbone
ResNet-50 and Resnet-101, respectively. It outperformed other methods with the same
backbones. Using the tiny version of Swin-Transformer [49] with FPN, we achieved the
best performance with 77.79% mAP. Notably, our results for the small vehicle (SV), which
is a typical class of small and cluttered objects, consistently achieved the best performances
under three different backbones, which demonstrates the effectiveness of our proposed
method for small and cluttered objects.

Results on HRSC2016. Ship detection is a vital application direction of remote sensing
images, where ships have large aspect ratios. Experiments on HRSC2016 have also verified
the superiority of our proposed method. As shown in Table 2, our proposed method
obtained 90.29% mAP, outperforming other methods listed in the table.
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Table 1. Comparisons with state-of-the-art methods on the DOTA dataset. All the reported results were performed on the single-scale DOTA.
The results with red color denote the best results in each column.

Type Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
Si

ng
le

-s
ta

ge
RetinaNet-O [13] R-50 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29 82.18 74.32 54.75 60.60 62.57 69.67 60.64 68.43

DAL [45] R-101 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78
RSDet [15] R-152 90.10 82.00 53.80 68.50 70.20 78.70 73.60 91.20 87.10 84.70 64.30 68.20 66.10 69.30 63.70 74.10
R3Det [34] R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

S2A-Net [5] R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
R3Det-DCL [17] R-152 89.78 83.95 52.63 69.70 76.84 81.26 87.30 90.81 84.67 85.27 63.50 64.16 68.96 68.79 65.45 75.54

Tw
o-

st
ag

e

Faster RCNN [3] R-50 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05
CAD-Net [33] R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90

CenterMap [50] R-50 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
SCRDet [9] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
FAOD [18] R-101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

RoI-Trans. [4] R-101 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 82.51 53.95 67.61 74.67 68.75 61.03 74.61
MaskOBB [51] R-50 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86

Gliding Vertex [52] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
ReDet [32] ReR-50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25

Oriented R-CNN [53] R-101 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

A
nc

ho
r-

fr
ee

CenterNet-O [14] DLA-34 [14] 81.00 64.00 22.60 56.60 38.60 64.00 64.90 90.80 78.00 72.50 44.00 41.10 55.50 55.00 57.40 59.10
PIoU [54] DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50

O2-DNet [39] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DRN [19] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
CFA [7] R-101 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05

Oriented RepPoints [23] R-101 89.53 84.07 59.86 71.76 79.95 80.03 87.33 90.84 87.54 85.23 59.15 66.37 75.23 73.75 57.23 76.52
Ours R-50 88.39 84.00 54.68 73.58 80.89 80.38 87.60 90.90 85.33 86.93 64.48 69.85 74.72 72.32 59.98 76.93
Ours R-101 88.50 83.84 54.35 71.11 80.93 80.25 87.64 90.90 85.11 87.00 64.07 70.12 75.12 72.85 60.15 76.79
Ours Swin-T 88.90 84.13 55.24 75.68 81.84 82.98 87.75 90.90 86.12 86.45 64.17 69.10 76.90 73.47 63.25 77.79
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Table 2. Results on HRSC2016. The best result is bolded.

Methods Backbone mAP

RRD [55] VGG16 84.30
RoI-Trans. [4] R-101-FPN 86.20

R3Det-KLD [41] R-101-FPN 87.45
CenterNet-O [14] DLA-34 87.89

Gliding Vertex [52] R-101-FPN 88.20
RetinaNet-O [13] R-101-FPN 89.18

PIOU [54] DLA-34 89.20
R3Det [34] R-101-FPN 89.26

R3Det-DCL [17] R-101-FPN 89.46
FPN-CSL [16] R-101-FPN 89.62

DAL [45] R-101-FPN 89.77
Ours R-50-FPN 90.29

Results on UCAS-AOD. The UCAS-AOD dataset contains a mass of small and cluttered
objects, which is competent to evaluate the effectiveness of our proposed method. All
the experimental results are shown in Table 3 with our proposed method obtaining the
best performance with 90.11% mAP. Although YOLOv7 [56] performs better in airplane
detection, it lacks the ability to capture small and densely packed targets, such as cars, in
remote sensing images.

Table 3. Results on UCAS-AOD. The best result is bolded in each column.

Methods Car Airplane mAP

YOLOv3-O [57] 74.63 89.52 82.08
RetinaNet-O [13] 84.64 90.51 87.57
Faster RCNN [3] 86.87 89.86 88.36

RoI Trans. [4] 87.99 89.90 88.95
DAL [45] 89.25 90.49 89.87

YOLOv7-O [56] 83.35 96.53 89.94
Oriented RepPoints [23] 89.51 90.70 90.11

Ours 89.73 90.78 90.26

Results on WHU-RSONE-OBB. To further verify the effectiveness of the proposed
method, we conducted a series of experiments on the WHU-RSONE-OBB dataset. As
shown in Table 4, our proposed method achieved the best AP values for plane and ship
with 92.83% mAP.

Table 4. Result on WHU-RSONE-OBB. The best result is bolded in each column.

Methods Airplane Storage-Tank Ship mAP

Faster-RCNN [3] 94.86 56.34 76.38 75.86
CNN-SOSF [58] 95.21 74.61 75.20 81.67
YOLOv3-O [57] 97.76 87.09 78.65 87.84
CNN-AOOF [31] 98.57 88.31 79.20 88.69
YOLOv7-O [56] 98.65 95.69 79.02 91.12

Ours 99.57 90.54 88.38 92.83

Model size and efficiency. The parameter size and the inference speed are shown
in Table 5. Our proposed model requires additional memory to compute the repulsion
loss during the training stage. However, as center-ness and repulsion constraints are only
calculated in the training stage, the inference speed is not affected by these two constraints
during the inference stage.
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Table 5. Model size and efficiency. For a fair comparison, all the models utilized ResNet-50 as the
backbone with a single NVIDIA RTX 2080S GPU.

Method Backbone Param Inf Time (fps)

RetinaNet-O [13] R-50 36.42 M 17.2
S2A-Net [5] R-50 38.6 M 15.5

Gliding Vertex [52] R-50 41.14 M 16.4
RoI-Trans. [4] R-50 55.13 M 16.5

R3Det [34] R-50 41.9 M 12.4
Ours R-50 36.61M 16.8

3.4. Visualization of Results

To have an intuitive view of our proposed method, we selected some images from the
testing set of the DOTA dataset to show the promising performance, as shown in Figure 7.

PLPL BDBD BRBR GTFGTF SVSVPL BD BR GTF SV

LVLV SHSH TCTCHAHA SPSPLV SH TCHA SP

BCBC STST SBFSBF RARA HCHCBC ST SBF RA HC

Figure 7. Visualization of the example detection results on DOTA testing set.
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4. Discussion

In this section, we first demonstrate the superiority of the adaptive point set to rep-
resent the oriented bounding box. Secondly, we verify the effectiveness of our proposed
center-ness quality assessment and repulsion constraint through a series of ablation studies.
Thirdly, we explore the relationship among different categories via the confusion matrix
on the DOTA validation set. Then, we further discuss how center-ness and repulsion
constraints improve the distribution of localization scores. Finally, we discuss the limitation
of the methods and possible future improvements.

4.1. Superiority of Adaptive Point Set

To examine the superiority of the adaptive point set to represent oriented boxes, we
compare RepPoints with the anchor-based methods RoI-Trans [4] and R3Det [34] on the
HRSC2016 dataset. RoI-Trans proposes a transformation module to effectively mitigate the
misalignment between RoIs and targets, while R3Det utilizes a feature refinement module
to reconstruct features. As shown in Table 6, the adaptive point set obtained nearly one
percent enhancement with no bells and whistles, which displays its inherent superiority for
the representation of oriented boxes.

Table 6. Comparisons between anchor-based orientation regression methods and our adaptive-point-
set-based method. The best result is bolded.

Methods Backbone mAP

RoI-Trans. [4] R-101 86.20
R3Det [34] R-101 89.26

RepPoints(adaptive point set) R-50 90.02

4.2. Effectiveness of Center-Ness and Repulsion Constraints

To investigate the effectiveness of center-ness quality assessment and repulsion con-
straint, we compared them against the baseline method [23] without using them. Table 7
shows the experimental results.

Table 7. Performance evaluation on center-ness quality assessment and repulsion constraint. PL, SV,
and SH denote the categories of plane, small vehicle, and ship, respectively. All the experiments adopt
ResNet-50 with FPN as the backbone. ‘�’ and ‘�’ in the Center-ness and Repulsion columns denote
the results with or without the corresponding constraint, respectively. We adopted ConvexGIoULoss
for regression loss if the repulsion constraint is not applied. The best result is bolded in each column.

Center-ness Repulsion PL SV SH mAP ∆

� � 87.02 80.18 87.28 75.97 -
� � 88.30 80.78 87.51 76.05 0.08
� � 88.66 80.73 87.54 76.31 0.34
� � 88.39 80.88 87.60 76.93 0.96

Obviously, both center-ness and repulsion constraints improve the accuracy of the
detector, especially the repulsion constraint, which considers the spatial correlation infor-
mation and obtained a 0.34 mAP improvement compared with the baseline. Meanwhile,
APs of three classic small and cluttered objects, plane, small vehicle, and ship, obtained con-
sistent improvements. Although the center-ness constraint only has a slight improvement,
with the collaboration of the repulsion constraint, the detector obtained a promising im-
provement with 0.96 mAP. This is because the center-ness constraint enforces the adaptive
points to concentrate more on the center of objects, which is helpful to the localization tasks.
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