Thông tin tài liệu


Nhan đề : Think Complexity Complexity Science and Computational Modeling
Tác giả : downey, Allen
Từ khoá : Ngôn ngữ lập trình; chương trình máy tính; python; ngôn ngữ máy tính
Năm xuất bản : 2012
Nhà xuất bản : O'Reilly
Tóm tắt : Expand your Python skills by working with data structures and algorithms in a refreshing contextthrough an eye-opening exploration of complexity science. Whether youre an intermediate-level Python programmer or a student of computational modeling, youll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations. Youll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise. Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tablesStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet starter code and solutions to help you re-implement and extend original experiments in complexityExplore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topicsExamine case studies of complex systems submitted by students and readers
URI: http://dlib.hust.edu.vn/handle/HUST/21794
Liên kết tài liệu gốc: https://www.dbooks.org/think-complexity-1492040207/
Trong bộ sưu tập: OER - Công nghệ thông tin
XEM MÔ TẢ

80

XEM & TẢI

35

Danh sách tệp tin đính kèm:
Ảnh bìa
  • OER000001417.pdf
      Restricted Access
    • Dung lượng : 1,33 MB

    • Định dạng : Adobe PDF



  • Tài liệu được cấp phép theo Bản quyền Creative Commons Creative Commons