Thông tin tài liệu
Nhan đề : | AlphaPeptStats: an open-source Python package for automated, scalable and industrial-strength statistical analysis of mass spectrometry-based proteomics |
Tác giả : | Krismer, Elena |
Từ khoá : | AlphaPeptStats; Python; mã nguồn mở; proteomics; thống kê tự động; đo khối phổ |
Năm xuất bản : | 2023 |
Nhà xuất bản : | bioRxiv |
Tóm tắt : | The widespread application of mass spectrometry (MS)-based proteomics in biomedical research increasingly requires robust, transparent and streamlined solutions to extract statistically reliable insights. Existing, popular tools were generally developed for specific uses in academic environments and did not fully embrace current open-source principles and best practices of software engineering. We have designed and implemented AlphaPeptStats, an inclusive python package with broad functionalities for normalization, imputation, visualization, and statistical analysis of proteomics data. It modularly builds on the established stack of Python scientific libraries, and is accompanied by a rigorous testing framework with 98% test coverage. It imports the output of a range of popular search engines. Data can be filtered and normalized according to user specifications. At its heart, AlphaPeptStats provides a wide range of robust statistical algorithms such as t-tests, ANOVA, PCA, hierarchical clustering and multiple covariate analysis – all in an automatable manner. Data visualization capabilities include heat maps, volcano plots, scatter plots in publication-ready format. AlphaPeptStats advances proteomic research through its robust tools that enable researchers to manually or automatically explore complex datasets to identify interesting patterns and outliers. |
URI: | http://dlib.hust.edu.vn/handle/HUST/23472 |
Liên kết tài liệu gốc: | https://www.biorxiv.org/content/10.1101/2023.03.10.532057v1.full.pdf+html |
Trong bộ sưu tập: | OER - Kỹ thuật hóa học; Công nghệ sinh học - Thực phẩm; Công nghệ môi trường |
XEM MÔ TẢ
35
XEM & TẢI
15
Danh sách tệp tin đính kèm:
Tài liệu được cấp phép theo Bản quyền Creative Commons