Thông tin tài liệu

Full metadata record
DC FieldValueLanguage
dc.contributor.authorHandler, David C.-
dc.date.accessioned2024-01-03T04:16:09Z-
dc.date.available2024-01-03T04:16:09Z-
dc.date.issued2021-
dc.identifier.otherOER000002949vi
dc.identifier.urihttp://dlib.hust.edu.vn/handle/HUST/23813-
dc.description.abstractThe multiple testing problem is a well-known statistical stumbling block in high-25 throughput data analysis, where large scale repetition of statistical methods introduces 26 unwanted noise into the results. While approaches exist to overcome the multiple testing 27 problem, these methods focus on theoretical statistical clarification rather than incorporating 28 experimentally-derived measures to ensure appropriately tailored analysis parameters. Here, 29 we introduce a method for estimating inter-replicate variability in reference samples for a 30 quantitative proteomics experiment using permutation analysis. This can function as a 31 modulator to multiple testing corrections such as the Benjamini-Hochberg ordered Q value 32 test.vi
dc.description.urihttps://www.biorxiv.org/content/10.1101/797217v2.full.pdf+htmlvi
dc.formatPDFvi
dc.language.isoenvi
dc.publisherbioRxivvi
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Vietnam*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/vn/*
dc.subjectProteomicsvi
dc.subjectsố liệu thống kêvi
dc.subjectchất lượngvi
dc.subjectdữ liệuvi
dc.subject.lccQH447vi
dc.titleAn experimentally-derived measure of inter-replicate variation in reference samples: the same-same permutation methodologyvi
dc.typeJournal articlevi
dc.description.noteCC BY-NC-ND 4.0vi
Appears in Collections:OER - Kỹ thuật hóa học; Công nghệ sinh học - Thực phẩm; Công nghệ môi trường

Files in This Item:
Thumbnail
  • OER000002949.pdf
      Restricted Access
    • Size : 515,15 kB

    • Format : Adobe PDF



  • This item is licensed under a Creative Commons License Creative Commons