Thông tin tài liệu
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Duran, Jordi | - |
dc.contributor.author | Brewer, M. Kathryn | - |
dc.date.accessioned | 2024-04-10T08:06:06Z | - |
dc.date.available | 2024-04-10T08:06:06Z | - |
dc.date.issued | 2020 | - |
dc.identifier.other | OER000000688 | vi |
dc.identifier.uri | http://dlib.hust.edu.vn/handle/HUST/24337 | - |
dc.description | Tài liệu này được phát hành theo giấy phép CC-BY-NC-ND 4.0 | vi |
dc.description.abstract | Brain glycogen is mainly stored in astrocytes. However, recent studies both in vitro and in vivo indicate that glycogen also plays important roles in neurons. By conditional deletion of glycogen synthase (GYS1), we previously developed a mouse model entirely devoid of glycogen in the central nervous system (GYS1Nestin-KO). These mice displayed altered electrophysiological properties in the hippocampus and increased susceptibility to kainate-induced seizures. To understand which of these functions is related to astrocytic glycogen, in the present study we generated a mouse model in which glycogen synthesis is eliminated specifically in astrocytes (GYS1Gfap-KO). Electrophysiological recordings of awake behaving mice revealed alterations in input/output curves and impaired long-term potentiation, similar, but to a lesser extent, to those obtained with GYS1Nestin-KO mice. Surprisingly, GYS1Gfap-KO mice displayed no change in susceptibility to kainate-induced seizures as determined by fEPSP recordings and video monitoring. These results confirm the importance of astrocytic glycogen in synaptic plasticity. | vi |
dc.description.uri | https://www.biorxiv.org/content/10.1101/2020.05.06.080978v1 | vi |
dc.format | vi | |
dc.language.iso | en | vi |
dc.publisher | Biochemical Journal | vi |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Vietnam | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/vn/ | * |
dc.subject | Glycogen | vi |
dc.subject | Long-term potentiation | vi |
dc.subject | Plasticity | vi |
dc.subject | Metabolism | vi |
dc.subject.lcc | QD405 | vi |
dc.title | Lack of astrocytic glycogen alters synaptic plasticity but not seizure susceptibility | vi |
dc.type | Journal article | vi |
Appears in Collections: | OER - Kỹ thuật hóa học; Công nghệ sinh học - Thực phẩm; Công nghệ môi trường |
Files in This Item:
This item is licensed under a Creative Commons License