Thông tin tài liệu
Nhan đề : | Deep learning enables the atomic structure determination of the Fanconi Anemia core complex from cryoEM |
Tác giả : | Farrell, Daniel P Anishchenko, Ivan Shakeel, Shabih |
Từ khoá : | Fanconi Anemia; Rosetta |
Năm xuất bản : | 2020 |
Nhà xuất bản : | Biochemical Journal |
Tóm tắt : | Cryo-electron microscopy of protein complexes often leads to moderate resolution maps (4-8 Å), with visible secondary structure elements but poorly resolved loops, making model-building challenging. In the absence of high-resolution structures of homologues, only coarse-grained structural features are typically inferred from these maps, and it is often impossible to assign specific regions of density to individual protein subunits. This paper describes a new method for overcoming these difficulties that integrates predicted residue distance distributions from a deep-learned convolutional neural network, computational protein folding using Rosetta, and automated EM-map-guided complex assembly. We apply this method to a 4.6 Å resolution cryoEM map of Fanconi Anemia core complex (FAcc), an E3 ubiquitin ligase required for DNA interstrand crosslink repair, which was previously challenging to interpret as it is comprised of 6557 residues, only 1897 of which are covered by homology models. In the published structure built from this map, only 387 residues could be assigned to specific subunits. By building and placing into density 42 deep-learning guided models containing 4795 residues not included in the previously published structure, we are able to determine an almost-complete atomic model of FAcc, in which 5182 of the 6557 residues were placed. The resulting model is consistent with previously published biochemical data, and facilitates interpretation of disease related mutational data. We anticipate that our approach will be broadly useful for cryoEM structure determination of large complexes containing many subunits for which there are no homologues of known structure. |
Mô tả: | Tài liệu này được phát hành theo giấy phép CC-BY-NC-ND 4.0 |
URI: | http://dlib.hust.edu.vn/handle/HUST/24370 |
Liên kết tài liệu gốc: | https://www.biorxiv.org/content/10.1101/2020.05.01.072751v1 |
Trong bộ sưu tập: | OER - Kỹ thuật hóa học; Công nghệ sinh học - Thực phẩm; Công nghệ môi trường |
XEM MÔ TẢ
13
XEM & TẢI
7
Danh sách tệp tin đính kèm:
Khi sử dụng tài liệu trong thư viện số bạn đọc phải tuân thủ đầy đủ luật bản quyền.