Thông tin tài liệu


Nhan đề : Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
Tác giả : Inoue, Keiichi
Karasuyama, Masayuki
Nakamura, Ryoko
Từ khoá : Rhodopsins; BLAST
Năm xuất bản : 2020
Nhà xuất bản : Biochemical Journal
Tóm tắt : Microbial rhodopsins are photoreceptive membrane proteins utilized as molecular tools in optogenetics. In this paper, a machine learning (ML)-based model was constructed to approximate the relationship between amino acid sequences and absorption wavelengths using ~800 rhodopsins with known absorption wavelengths. This ML-based model was specifically designed for screening rhodopsins that are red-shifted from representative rhodopsins in the same subfamily. Among 5,558 candidate rhodopsins suggested by a protein BLAST search of several protein databases, 40 were selected by the ML-based model. The wavelengths of these 40 selected candidates were experimentally investigated, and 32 (80%) showed red-shift gains. In addition, four showed red-shift gains > 20 nm, and two were found to have desirable ion-transporting properties, indicating that they were potentially useful in optogenetics. These findings suggest that an ML-based model can reduce the cost for exploring new functional proteins.
Mô tả: Tài liệu này được phát hành theo giấy phép CC-BY-NC-ND 4.0
URI: http://dlib.hust.edu.vn/handle/HUST/24400
Liên kết tài liệu gốc: https://www.biorxiv.org/content/10.1101/2020.04.21.052548v1
Trong bộ sưu tập: OER - Kỹ thuật hóa học; Công nghệ sinh học - Thực phẩm; Công nghệ môi trường
XEM MÔ TẢ

31

XEM & TẢI

11

Danh sách tệp tin đính kèm:
Ảnh bìa
  • OER000000719.pdf
      Restricted Access
  • Nội dung
    • Dung lượng : 2,51 MB

    • Định dạng : Adobe PDF



  • Tài liệu được cấp phép theo Bản quyền Creative Commons Creative Commons