Thông tin tài liệu


Nhan đề : Crowdsourced mapping extends the target space of kinase inhibitors
Tác giả : Cichonska, Anna
Ravikumar, Balaguru
Allaway, Robert J
Từ khoá : Kinase; 295 kinases
Năm xuất bản : 2020
Nhà xuất bản : Biochemical Journal
Tóm tắt : Despite decades of intensive search for compounds that modulate the activity of particular targets, there are currently small-molecules available only for a small proportion of the human proteome. Effective approaches are therefore required to map the massive space of unexplored compound-target interactions for novel and potent activities. Here, we carried out a crowdsourced benchmarking of predictive models for kinase inhibitor potencies across multiple kinase families using unpublished bioactivity data. The top-performing predictions were based on kernel learning, gradient boosting and deep learning, and their ensemble resulted in predictive accuracy exceeding that of kinase activity assays. We then made new experiments based on the model predictions, which further improved the accuracy of experimental mapping efforts and identified unexpected potencies even for under-studied kinases. The open-source algorithms together with the novel bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking new prediction algorithms and for extending the druggable kinome.
Mô tả: Tài liệu này được phát hành theo giấy phép CC-BY 4.0
URI: http://dlib.hust.edu.vn/handle/HUST/24667
Liên kết tài liệu gốc: https://www.biorxiv.org/content/10.1101/2019.12.31.891812v3
Trong bộ sưu tập: OER - Kỹ thuật hóa học; Công nghệ sinh học - Thực phẩm; Công nghệ môi trường
XEM MÔ TẢ

15

XEM & TẢI

15

Danh sách tệp tin đính kèm:
Ảnh bìa
  • OER000000888.pdf
      Restricted Access
  • Nội dung
    • Dung lượng : 1,11 MB

    • Định dạng : Adobe PDF



  • Tài liệu được cấp phép theo Bản quyền Creative Commons Creative Commons