
20chapter2.representation
andtransitivityassumptionsleadtoanabilitytorepresentplausibilitybyareal-
valuedfunctionP thathasthefollowingtwoproperties:
3
3
SeediscussioninE.T.Jaynes,
ProbabilityTheory:TheLogicofSci-
ence.CambridgeUniversityPress,
2003.
P(A) > P(B) ifandonlyifA ≻ B (2.5)
P(A) = P(B) ifandonlyifA ∼ B (2.6)
Ifwemakeasetofadditionalassumptions
4
abouttheformof
P
,thenwecan
4
Theaxiomatizationofsubjective
probabilityisgivenbyP.C.Fish-
burn,“TheAxiomsofSubjec-
tiveProbability,”StatisticalScience,
vol.1,no.3,pp.335–345,1986.
A morerecent axiomatization is
containedinM.J.DupréandF.J.
Tipler,“New AxiomsforRigor-
ousBayesianProbability,”Bayesian
Analysis,vol.4,no.3,pp.599–606,
2009.
showthat
P
mustsatisfythebasicaxiomsofprobability(seeappendixA.2).Ifwe
arecertainof
A
,then
P(A) = 1
.Ifwebelievethat
A
isimpossible,then
P(A) = 0
.
Uncertaintyinthetruthof
A
isrepresentedbyvaluesbetweenthetwoextrema.
Hence,probabilitymassesmustliebetween0 and1,with0 ≤ P(A) ≤ 1.
2.2ProbabilityDistributions
Aprobabilitydistributionassignsprobabilitiestodierentoutcomes.
5
Thereare
5
Foranintroductiontoprobability
theory,seeD.P.BertsekasandJ.N.
Tsitsiklis,IntroductiontoProbability.
AthenaScientic,2002.
dierentwaystorepresentprobabilitydistributionsdependingonwhetherthey
involvediscreteorcontinuousoutcomes.
2.2.1DiscreteProbabilityDistributions
1
2 3
4
5 6
0.1
0.2
0.3
x
P(x)
Figure 2.1.Aprobabilitymass
functionforadistributionover
1 : 6.
Adiscreteprobabilitydistributionisadistributionoveradiscretesetofvalues.We
canrepresentsuchadistributionasaprobabilitymassfunction,whichassigns
aprobabilitytoeverypossibleassignmentofitsinputvariabletoavalue.For
example,supposethatwehaveavariable
X
thatcantakeononeof
n
values:
1, . . . , n
,or,usingcolonnotation,
1 : n
.
6
Adistributionassociatedwith
X
speciesthe
6
Wewilloftenusethiscolonnota-
tionforcompactness.Othertexts
sometimesusethenotation
[1 . . n]
forintegerintervalsfrom
1
to
n
.
Wewillalsousethiscolonnota-
tiontoindexintovectorsandma-
trices.Forexample
x
1:n
represents
x
1
, . . . , x
n
. Thecolonnotation is
sometimesusedinprogramming
languages,suchasJuliaandMAT-
LAB.
n
probabilitiesofthevariousassignmentsofvaluestothatvariable,inparticular
P(X = 1), . . . , P(X = n).Figure2.1showsanexampleofadiscretedistribution.
Thereareconstraintsontheprobabilitymassesassociatedwithdiscretedistri-
butions.Themassesmustsumto1:
n
∑
i=1
P(X = i) = 1 (2.7)
and0 ≤ P(X = i) ≤ 1 foralli.
Fornotationalconvenience,wewilluselowercaselettersandsuperscriptsas
shorthandwhendiscussingtheassignmentofvaluestovariables.Forexample,
P(x
3
)
isshorthandfor
P(X = 3)
.If
X
isabinaryvariable,itcantakeonthevalueof
trueorfalse.
7
Wewilluse
0
torepresentfalseand
1
torepresenttrue.Forexample,
7
Julia,likemanyotherprogram-
ming languages, similarly treats
Booleanvaluesas
0
and
1
innu-
mericaloperations.
weuseP(x
0
) torepresenttheprobabilitythatX isfalse.
©2022MassachusettsInstituteofTechnology,sharedunderaCreativeCommonsCC-BY-NC-NDlicense.
2022-05-0721:55:16-07:00,commentstobugs@algorithmsbook.com