Fermentation 2020, 6,47
Lactobacillus plantarum. The fermented material was provided to black soldier fly larvae, which
consumed deoxynivalenol-contaminated materials and converted them in insect biomass without
accumulating deoxynivalenol in their bodies. This treatment technology using black soldier fly larvae
may contribute to reducing the burden of animal protein shortages in the animal feed market.
Varelas [
15
] compiled up-to-date information on the mass rearing of edible insects for food and
feed based on food wastes. Edible insects are insect species that can be used for human consumption
but also for livestock feed as a whole, parts of them, and/or protein, and lipid extract.
Funding: This research received no external funding.
Acknowledgments:
The editor wish to thank our article contributors, Editorial Board members, Reviewers,
and Assistant Editors of this journal, whose contributions made the publication of this Special Issue possible.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food
wastes. J. Environ. Manag. 2019, 233, 352–370. [CrossRef][PubMed]
2.
Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.;
Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production
of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci.
2013
, 6,
426–464. [CrossRef]
3.
Singhvi, M.; Zendo, T.; Sonomoto, K. Free lactic acid production under acidic conditions by lactic acid
bacteria strains: Challenges and future prospects. Appl. Microbiol. Biotechnol.
2018
, 102, 1–14. [CrossRef]
[PubMed]
4.
Bustamante, D.; Tortajada, M.; Ram
ó
n, D.; Rojas, A. Production of D-Lactic Acid by the Fermentation of
Orange Peel Waste Hydrolysate by Lactic Acid Bacteria. Fermentation 2020, 6,1.[CrossRef]
5.
Xu, N.; Liu, S.; Xin, F.; Zhou, J.; Jia, H.; Xu, J.; Jiang, M.; Dong, W. Biomethane Production from Lignocellulose:
Biomass Recalcitrance and Its Impacts on Anaerobic Digestion. Front. Bioeng. Biotechnol.
2019
, 7, 191.
[CrossRef][PubMed]
6.
Tomita, H.; Tamaru, Y. The Second-Generation Biomethane from Mandarin Orange Peel under Cocultivation
with Methanogens and the Armed Clostridium Cellulovorans. Fermentation 2019, 5, 95. [CrossRef]
7.
Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kami´nskia, M. Hydrogen
production from biomass using dark fermentation. Renew. Sustain. Energy Rev.
2018
, 91, 665–694. [CrossRef]
8.
Keskin, T.; Abo-Hashesh, M.; Hallenbeck, P.C. Photofermentative hydrogen production from wastes.
Bioresour. Technol. 2011, 102, 8557–8568. [CrossRef][PubMed]
9.
Schwalm, N.D., III; Mojadedi, W.; Gerlach, E.S.; Benyamin, M.; Perisin, M.A.; Akingbade, K.L. Developing a
Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste. Fermentation
2019
,
5, 98. [CrossRef]
10.
Johnson, E. Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod. Biorefin.
2016, 10, 164–174. [CrossRef]
11.
Prasoulas, G.; Gentikis, A.; Konti, A.; Kalantzi, S.; Kekos, D.; Mamma, D. Bioethanol Production from Food
Waste Applying the Multienzyme System Produced On-Site by Fusarium oxysporum F3 and Mixed Microbial
Cultures. Fermentation 2020, 6, 39. [CrossRef]
12.
Carri
ó
n-Paladines, V.; Fries, A.; Caballero, R.E.; P
é
rez Daniëls, P.; Garc
í
a-Ruiz, R. Biodegradation of Residues
from the Palo Santo (Bursera graveolens) Essential Oil Extraction and Their Potential for Enzyme Production
Using Native Xylaria Fungi from Southern Ecuador. Fermentation 2019, 5, 76. [CrossRef]
13.
Jacob, F.F.; Striegel, L.; Rychlik, M.; Hutzler, M.; Methner, F.-J. Spent Yeast from Brewing Processes:
A Biodiverse Starting Material for Yeast Extract Production. Fermentation 2019, 5, 51. [CrossRef]
3