
(72) Brenke, R.; Kozakov, D.; Chuang, G. Y.; Beglov, D.; Hall, D.; Landon, M. R.; Mattos, C.;
Vajda, S. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain
correlation techniques. Bioinformatics 2009, 25 (5), 621-627. DOI:
10.1093/bioinformatics/btp036.
(73) Kozakov, D.; Grove, L. E.; Hall, D. R.; Bohnuud, T.; Mottarella, S. E.; Luo, L.; Xia, B.;
Beglov, D.; Vajda, S. The FTMap family of web servers for determining and characterizing
ligand-binding hot spots of proteins. Nat Protoc 2015, 10 (5), 733-755. DOI:
10.1038/nprot.2015.043.
(74) The PyMOL Molecular Graphics System; Schrödinger, LLC: (accessed.
(75) Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J. M.; Lu, C.; Dahlgren, M. K.;
Mondal, S.; Chen, W.; Wang, L.; et al. OPLS3e: Extending Force Field Coverage for Drug-Like
Small Molecules. J Chem Theory Comput 2019, 15 (3), 1863-1874. DOI:
10.1021/acs.jctc.8b01026.
(76) Schrödinger Release 2021-1 : LigPrep; Schrödinger, LLC: New York, NY, 2021. (accessed.
(77) Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.;
Banks, J. L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment
factors in database screening. J Med Chem 2004, 47 (7), 1750-1759. DOI: 10.1021/jm030644s.
(78) RDKit: Open-source cheminformatics; https://www.rdkit.org (accessed.
(79) Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T.
A.; Sanschagrin, P. C.; Mainz, D. T. Extra precision glide: docking and scoring incorporating a
model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006, 49 (21), 6177-
6196. DOI: 10.1021/jm051256o.
(80) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.;
Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; et al. Glide: a new approach for rapid,
accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem
2004, 47 (7), 1739-1749. DOI: 10.1021/jm0306430.
(81) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,
M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python.
The Journal of Machine Learning Research 2011, (12), 2825-2830.
(82) Kim, S. S.; Aprahamian, M. L.; Lindert, S. Improving inverse docking target identification
with Z-score selection. Chem Biol Drug Des 2019, 93 (6), 1105-1116. DOI:
10.1111/cbdd.13453.
(83) Siddiqui, J. K.; Tikunova, S. B.; Walton, S. D.; Liu, B.; Meyer, M.; de Tombe, P. P.;
Neilson, N.; Kekenes-Huskey, P. M.; Salhi, H. E.; Janssen, P. M.; et al. Myofilament Calcium
Sensitivity: Consequences of the Effective Concentration of Troponin I. Front Physiol 2016, 7,
632. DOI: 10.3389/fphys.2016.00632.
(84) Davis, J. P.; Norman, C.; Kobayashi, T.; Solaro, R. J.; Swartz, D. R.; Tikunova, S. B.
Effects of thin and thick filament proteins on calcium binding and exchange with cardiac
troponin C. Biophys J 2007, 92 (9), 3195-3206. DOI: 10.1529/biophysj.106.095406.
(85) Bergrin, M.; Bicer, S.; Lucas, C. A.; Reiser, P. J. Three-dimensional compartmentalization
of myosin heavy chain and myosin light chain isoforms in dog thyroarytenoid muscle. Am J
Physiol Cell Physiol 2006, 290 (5), C1446-1458. DOI: 10.1152/ajpcell.00323.2005.
(86) Robertson, I. M.; Baryshnikova, O. K.; Li, M. X.; Sykes, B. D. Defining the binding site of
levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex.
Biochemistry 2008, 47 (28), 7485-7495. DOI: 10.1021/bi800438k.
.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
The copyright holder for this preprintthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527323doi: bioRxiv preprint