
References
Backus, K.M., Correia, B.E., Lum, K.M., Forli, S., Horning, B.D., González-Páez, G.E., Chatterjee, S., Lanning,
B.R., Teijaro, J.R., Olson, A.J., et al. (2016). Proteome-wide covalent ligand discovery in native biological
systems. Nature 534, 570–574. https://doi.org/10.1038/nature18002.
Baek, K., Scott, D.C., and Schulman, B.A. (2021). NEDD8 and ubiquitin ligation by cullin-RING E3 ligases.
Curr. Opin. Struct. Biol. 67, 101–109. https://doi.org/10.1016/j.sbi.2020.10.007.
Belcher, B.P., Ward, C.C., and Nomura, D.K. (2021). Ligandability of E3 Ligases for Targeted Protein
Degradation Applications. Biochemistry https://doi.org/10.1021/acs.biochem.1c00464.
Bond, M.J., and Crews, C.M. (2021). Proteolysis targeting chimeras (PROTACs) come of age: entering the
third decade of targeted protein degradation. RSC Chem. Biol. 2, 725–742. https://doi.org/10.1039/d1cb00011j.
Burslem, G.M., and Crews, C.M. (2020). Proteolysis-Targeting Chimeras as Therapeutics and Tools for
Biological Discovery. Cell 181, 102–114. https://doi.org/10.1016/j.cell.2019.11.031.
Chaturvedi, M.M., Sung, B., Yadav, V.R., Kannappan, R., and Aggarwal, B.B. (2011). NF-κB addiction and its
role in cancer: ‘one size does not fit all.’ Oncogene 30, 1615–1630. https://doi.org/10.1038/onc.2010.566.
Chung, C.Y.-S., Shin, H.R., Berdan, C.A., Ford, B., Ward, C.C., Olzmann, J.A., Zoncu, R., and Nomura, D.K.
(2019). Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition. Nat. Chem.
Biol. 15, 776–785. https://doi.org/10.1038/s41589-019-0308-4.
Dixon, S.J., and Stockwell, B.R. (2009). Identifying druggable disease-modifying gene products. Curr. Opin.
Chem. Biol. 13, 549–555. https://doi.org/10.1016/j.cbpa.2009.08.003.
Grossman, E.A., Ward, C.C., Spradlin, J.N., Bateman, L.A., Huffman, T.R., Miyamoto, D.K., Kleinman, J.I., and
Nomura, D.K. (2017). Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural
Products. Cell Chem. Biol. 24, 1368-1376.e4. https://doi.org/10.1016/j.chembiol.2017.08.013.
Henning, N.J., Manford, A.G., Spradlin, J.N., Brittain, S.M., Zhang, E., McKenna, J.M., Tallarico, J.A., Schirle,
M., Rape, M., and Nomura, D.K. (2022a). Discovery of a Covalent FEM1B Recruiter for Targeted Protein
Degradation Applications. J. Am. Chem. Soc. 144, 701–708. https://doi.org/10.1021/jacs.1c03980.
Henning, N.J., Boike, L., Spradlin, J.N., Ward, C.C., Liu, G., Zhang, E., Belcher, B.P., Brittain, S.M., Hesse,
M.J., Dovala, D., et al. (2022b). Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat.
Chem. Biol. https://doi.org/10.1038/s41589-022-00971-2.
Mayor-Ruiz, C., Bauer, S., Brand, M., Kozicka, Z., Siklos, M., Imrichova, H., Kaltheuner, I.H., Hahn, E., Seiler,
K., Koren, A., et al. (2020). Rational discovery of molecular glue degraders via scalable chemical profiling. Nat.
Chem. Biol. 16, 1199–1207. https://doi.org/10.1038/s41589-020-0594-x.
Meissner, F., Geddes-McAlister, J., Mann, M., and Bantscheff, M. (2022). The emerging role of mass
spectrometry-based proteomics in drug discovery. Nat. Rev. Drug Discov. 1–18.
https://doi.org/10.1038/s41573-022-00409-3.
Schreiber, S.L. (2021). The Rise of Molecular Glues. Cell 184, 3–9. https://doi.org/10.1016/j.cell.2020.12.020.
Słabicki, M., Kozicka, Z., Petzold, G., Li, Y.-D., Manojkumar, M., Bunker, R.D., Donovan, K.A., Sievers, Q.L.,
Koeppel, J., Suchyta, D., et al. (2020). The CDK inhibitor CR8 acts as a molecular glue degrader that depletes
cyclin K. Nature 585, 293–297. https://doi.org/10.1038/s41586-020-2374-x.
Spradlin, J.N., Hu, X., Ward, C.C., Brittain, S.M., Jones, M.D., Ou, L., To, M., Proudfoot, A., Ornelas, E.,
Woldegiorgis, M., et al. (2019a). Harnessing the anti-cancer natural product nimbolide for targeted protein
degradation. Nat. Chem. Biol. 15, 747–755. https://doi.org/10.1038/s41589-019-0304-8.
.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
The copyright holder for this preprint (whichthis version posted May 18, 2022. ; https://doi.org/10.1101/2022.05.18.492542doi: bioRxiv preprint